×

A local meshless collocation method for solving certain inverse problems. (English) Zbl 1403.65120

Summary: In this paper, we propose a meshless scheme based on compactly supported radial basis functions (CS-RBFs) for solving the Cauchy problem of Poisson’s equation and the inverse heat conduction problems in 2D. By assuming the unknown boundary condition to be a polynomial function, the inverse problems can be solved using a procedure similar to the process for solving forward problems. We employ Tikhonov regularization technique under L-curve regularization parameter to obtain a stable numerical solution. Numerical results verify the effectiveness and stability of this method.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ling, Leevan; Tomoya, Takeuchi, Boundary control for inverse Cauchy problems of the Laplace equations, Comput Model Eng Sci, 29, 45-54, (2008) · Zbl 1232.65140
[2] Li, M.; Xiong, X. T.; Li, Y., Method of fundamental solution for an inverse heat conduction problem with variable coefficients, Int J Comput Methods, 10, (2013) · Zbl 1359.65181
[3] Lesnic, D.; Zeb, A., The method of fundamental solutions for an inverse internal boundary value problem for the biharmonic equation, Int J Comput Methods, 6, 557-567, (2009) · Zbl 1267.65171
[4] Hon, Y. C.; Wei, T., A fundamental solution method for inverse heat conduction problem, Eng Anal Bound Elem, 28, 489-495, (2004) · Zbl 1073.80002
[5] Wei, T.; Li, Y. S., An inverse boundary problem for one-dimensional heat equation with a multilayer domain, Eng Anal Bound Elem, 33, 225-232, (2009) · Zbl 1244.80005
[6] Pourgholi, R.; Rostamian, M., A stable numerical algorithm for solving an inverse parabolic problem, J Inf Comput Sci, 4, 290-298, (2009)
[7] Marin, L., An alternating iterative MFS algorithm for the Cauchy problem for the modified Helmholtz equation, Comput Mech, 45, 665-677, (2010) · Zbl 1398.65278
[8] Hu, X. Y.; Xu, X.; Chen, W. B., Numerical method for the inverse heat transfer problem in composite materials with Stefan-Boltzmann conditions, Adv Comput Math, 33, 471-489, (2010) · Zbl 1207.65115
[9] Liu, G. R.; Lee, J. H.; Patera, A. T.; Yang, Z. L.; Lam, K. Y., Inverse identification of thermal parameters using reduced-basis method, Comput Methods Appl Mech Eng, 194, 3090-3107, (2005) · Zbl 1137.74361
[10] Liu, G. R.; Zaw, K.; Wang, Y. Y., Rapid inverse parameter estimation using reduced-basis approximation with asymptotic error estimation, Comput Methods Appl Mech Eng, 197, 3898-3910, (2008) · Zbl 1194.74102
[11] Deng, B.; Tan, K. B.C.; Lu, Y.; Zaw, K.; Zhang, J.; Liu, G. R., Inverse identification of elastic modulus of dental implant-bone interfacial tissue using neural network and FEA model, Inverse Probl Sci Eng, 17, 1073-1083, (2009) · Zbl 1396.74079
[12] Fairweather, G.; Karageorghis, A., The method of fundamental solutions for elliptic boundary value problems, Adv Comput Math, 9, 69-95, (1998) · Zbl 0922.65074
[13] Golberg, M. A.; Chen, C. S., The theory of radial basis functions applied to the BEM for inhomogeneous partial differential equations, Bound Elem Commun, 5, 57-61, (1994)
[14] Golberg, M. A.; Chen, C. S.; Bowman, H.; Power, H., Some comments on the use of radial basis functions in the dual reciprocity method, Comput Mech, 21, 141-148, (1998) · Zbl 0931.65116
[15] Hon, Y. C.; Wu, Z., A numerical computation for inverse boundary determination problem, Eng Anal Bound Elem, 24, 599-606, (2000) · Zbl 0972.65085
[16] Li, J., A radial basis meshless method for solving inverse boundary value problems, Commun Numer Methods Eng, 20, 51-60, (2004) · Zbl 1035.65118
[17] Cheng, A. H.-D.; Cabral, J. J.S. P., Direct solution of ill-posed boundary value problems by radial basis function collocation method, Int J Numer Methods Eng, 64, 45-64, (2005) · Zbl 1108.65059
[18] Li, M.; Jiang, T. S.; Hon, Y. C., A meshless method based on RBFs method for nonhomogeneous backward heat conduction problem, Eng Anal Bound Elem, 34, 785-792, (2010) · Zbl 1244.80023
[19] Li, M.; Chen, C. S.; Hon, Y. C., A meshless method for solving nonhomogeneous Cauchy problems, Eng Anal Bound Elem, 35, 499-506, (2011) · Zbl 1259.65193
[20] Chen, C. S.; Brebbia, C. A.; Power, H., Dual reciprocity method using compactly supported radial basis functions, Commun Numer Methods Eng, 15, 137-150, (1999) · Zbl 0927.65140
[21] Chen, C. S.; Kuhn, G.; Li, J.; Mishuris, G., Radial basis functions for solving near singular Poisson problems, Commun Numer Methods Eng, 19, 333-347, (2003) · Zbl 1018.65131
[22] Cheng, A. H.-D.; Young, D. L.; Tsai, C. C., Solution of poisson׳s equation by iterative DRBEM using compactly supported, positive definite radial basis function, Eng Anal Bound Elem, 24, 549-557, (2000) · Zbl 0966.65089
[23] Young, D. L.; Tsai, C. C.; Eldho, T. I.; Cheng, A. H.-D., Solution of Stokes flow using an iterative DRBEM based on compactly supported, positive definite radial basis function, Int J Comput Math Appl, 43, 607-619, (2002) · Zbl 1073.76595
[24] Golberg, M. A.; Chen, C. S.; Ganesh, M., Particular solution of 3D Helmholtz-type equations using compactly supported radial basis functions, Eng Anal Bound Elem, 24, 539-547, (2000) · Zbl 0994.76058
[25] Wong, S. M.; Hon, Y. C.; Golberg, M. A., Compactly supported radial basis functions for shallow water equations, Appl Math Comput, 127, 79-101, (2002) · Zbl 1126.76352
[26] Wu, Z. M., Multivariate compactly supported positive definite radial functions, Adv Comput Math, 101, 283-292, (2005) · Zbl 0837.41016
[27] Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv Comput Math, 4, 389-396, (1995) · Zbl 0838.41014
[28] Buhmann, M. D., A new class of radial basis functions with compact support, Math Comput, 70, 307-318, (2001) · Zbl 0956.41002
[29] Kansa, E. J., Multiquadrics scattered data approximation scheme with applications to computational fluid dynamics I, Comput Math Appl, 19, 127-145, (1990) · Zbl 0692.76003
[30] Tikhonov, A. N.; Arsenin, V. Y., On the solution of ill-posed problems, (1977), Wiley New York · Zbl 0354.65028
[31] Wei, T.; Hon, Y. C.; Ling, L., Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators, Eng Anal Bound Elem, 31, 373-385, (2007) · Zbl 1195.65206
[32] Lin, J.; Chen, W.; Wang, F. Z., A new investigation into regularization techniques for the method of fundamental solution, Math Comput Simul, 81, 1144-1152, (2011) · Zbl 1210.65198
[33] Lawson, C. L.; Hanson, R. J., Solving least squares problems, (1974), Prentice-Hall Upper Saddle River, NJ · Zbl 0860.65028
[34] Hansen, P. C.; O’Leary, D. P., The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J Sci Comput, 14, 1487-1503, (1993) · Zbl 0789.65030
[35] Rashed, Y. F., BEM for dynamic analysis using compact supported radial basis functions, Comput Struct, 80, 1351-1367, (2002)
[36] Hansen, P. C., Regularization toolsa Matlab package for analysis and solution of discrete ill-posed problems, Numer Algorithms, 6, 1-35, (1994) · Zbl 0789.65029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.