×

Method of approximate particular solutions for constant- and variable-order fractional diffusion models. (English) Zbl 1403.65087

Summary: The method of approximate particular solutions (MAPS) is an alternative radial basis function (RBF) meshless method, which is defined in terms of a linear combination of the particular solutions of the inhomogeneous governing equations with traditional RBFs as the source term. In this paper, we apply the MAPS to both constant- and variable-order time fractional diffusion models. In the discretization formulation, a finite difference scheme and the MAPS are used respectively to discretize time fractional derivative and spatial derivative terms. Numerical investigation examples show the present meshless scheme has highly accuracy and computationally efficiency for various fractional diffusion models.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Hilfer, R., Applications of fractional calculus in physics, (2000), World Scientific Singapore · Zbl 0998.26002
[2] Metzler, R.; Klafter, J., The random walk׳s guide to anomalous diffusion: a fractional dynamics approach, Phys Rep, 339, 1, 1-77, (2000) · Zbl 0984.82032
[3] Wyss, W., The fractional diffusion equation, J Math Phys, 27, 2782-2785, (1986) · Zbl 0632.35031
[4] Gorenflo, R.; Luchko, Y.; Mainardi, F., Wright functions as scale-invariant solutions of the diffusion-wave equation, J Comput Appl Math, 118, 1-2, 175-191, (2000) · Zbl 0973.35012
[5] Yang, Q.; Turner, I.; Liu, F.; Ilis, M., Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J Sci Comput, 33, 3, 1159-1180, (2011) · Zbl 1229.35315
[6] Gorenflo, R.; Mainardi, F.; Moretti, D.; Pagnini, G.; Paradisi, P., Discrete random walk models for space-time fractional diffusion, Chem Phys, 284, 1-2, 521-541, (2007)
[7] Fu, Z.-J.; Chen, W.; Yang, H.-T., Boundary particle method for Laplace transformed time fractional diffusion equations, J Comput Phys, 235, 52-66, (2013) · Zbl 1291.76256
[8] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M., Fractional diffusion in inhomogeneous media, J Phys A: Math Gen, 38, 42, L679, (2005) · Zbl 1082.76097
[9] Sun, H.; Chen, W.; Chen, Y., Variable-order fractional differential operators in anomalous diffusion modeling, Phys A: Stat Mech Appl, 388, 21, 4586-4592, (2009)
[10] Lorenzo, C. F.; Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dyn, 29, 1-4, 57-98, (2002) · Zbl 1018.93007
[11] Sun, H.; Chen, W.; Wei, H., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur Phys J Spec Top, 193, 1, 185-192, (2011)
[12] Tadjeran, C.; Meerschaert, M. M., A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J Comput Phys, 220, 2, 813-823, (2007) · Zbl 1113.65124
[13] Murio, D. A., Implicit finite difference approximation for time fractional diffusion equations, Comput Math Appl, 56, 4, 1138-1145, (2008) · Zbl 1155.65372
[14] Wang, H.; Wang, K.; Sircar, T., A direct O(nlog2N) finite difference method for fractional diffusion equations, J Comput Phys, 229, 21, 8095-8104, (2010) · Zbl 1198.65176
[15] Ren, J.; Sun, Z.; Zhao, X., Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J Comput Phys, 232, 1, 456-467, (2013) · Zbl 1291.35428
[16] Zhao, X.; Sun, Z., A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, J Comput Phys, 230, 15, 6061-6074, (2011) · Zbl 1227.65075
[17] Sun, H.; Chen, W.; Li, C.; Chen, Y., Finite difference schemes for variable-order time fractional diffusion equation, Int J Bifurc Chaos, 22, 04, 1250085, (2012) · Zbl 1258.65079
[18] Shen, S.; Liu, F.; Chen, J.; Turner, I.; Anh, V., Numerical techniques for the variable order time fractional diffusion equation, Appl Math Comput, 218, 22, 10861-10870, (2012) · Zbl 1280.65089
[19] Chen, C. M.; Liu, F.; Anh, V.; Turner, I., Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J Sci Comput, 32, 4, 1740-1760, (2010) · Zbl 1217.26011
[20] Lin, R.; Liu, F.; Anh, V.; Turner, I., Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl Math Comput, 212, 2, 435-445, (2009) · Zbl 1171.65101
[21] Langlands, T. A.M.; Henry, B. I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J Comput Phys, 205, 2, 719-736, (2005) · Zbl 1072.65123
[22] Cui, M., Compact finite difference method for the fractional diffusion equation, J Comput Phys, 228, 20, 7792-7804, (2009) · Zbl 1179.65107
[23] Zhuang, P.; Liu, F., Implicit difference approximation for the time fractional diffusion equation, J Appl Math Comput, 22, 3, 87-99, (2006) · Zbl 1140.65094
[24] Zhang, Y.; Sun, Z.; Zhao, X., Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM J Numer Anal, 50, 3, 1535-1555, (2012) · Zbl 1251.65126
[25] Chen, C.-M.; Liu, F.; Turner, I.; Anh, V., A Fourier method for the fractional diffusion equation describing sub-diffusion, J Comput Phys, 227, 2, 886-897, (2007) · Zbl 1165.65053
[26] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J Comput Phys, 225, 2, 1533-1552, (2007) · Zbl 1126.65121
[27] Jiang, Y.; Ma, J., High-order finite element methods for time-fractional partial differential equations, J Comput Appl Math, 235, 11, 3285-3290, (2011) · Zbl 1216.65130
[28] Li, C.; Zhao, Z.; Chen, Y., Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput Math Appl, 62, 3, 855-875, (2011) · Zbl 1228.65190
[29] Fix, G. J.; Roof, J. P., Least squares finite-element solution of a fractional order two-point boundary value problem, Comput Math Appl, 48, 7-8, 1017-1033, (2004) · Zbl 1069.65094
[30] Katsikadelis, J. T., The BEM for numerical solution of partial fractional differential equations, Comput Math Appl, 62, 3, 891-901, (2011) · Zbl 1228.74103
[31] Brunner, H.; Ling, L.; Yamamoto, M., Numerical simulations of 2D fractional subdiffusion problems, J Comput Phys, 229, 18, 6613-6622, (2010) · Zbl 1197.65143
[32] Chen, W.; Ye, L.; Sun, H., Fractional diffusion equations by the kansa method, Comput Math Appl, 59, 5, 1614-1620, (2010) · Zbl 1189.35356
[33] Liu, Q.; Gu, Y.; Zhuang, P.; Liu, F.; Nie, Y., An implicit RBF meshless approach for time fractional diffusion equations, Comput Mech, 48, 1, 1-12, (2011) · Zbl 1377.76025
[34] Chen, C. S.; Fan, C. M.; Wen, P. H., The method of approximate particular solutions for solving elliptic problems with variable coefficients, Int J Comput Methods, 8, 03, 545-559, (2011) · Zbl 1245.65172
[35] Ling, L.; Chen, C. S.; Kwok, T. O., Adaptive method of particular solution for solving 3d inhomogeneous elliptic equations, Int J Comput Methods, 07, 03, 499-511, (2010) · Zbl 1267.65190
[36] Chen, W.; Fu, Z. J.; Chen, C. S., Recent advances on radial basis function collocation methods, (2013), Springer Berlin
[37] Tsai, C.-C.; Chen, C. S.; Hsu, T.-W., The method of particular solutions for solving axisymmetric polyharmonic and poly-Helmholtz equations, Eng Anal Bound Elem, 33, 12, 1396-1402, (2009) · Zbl 1244.65225
[38] Chen, C. S.; Fan, C. M.; Wen, P. H., The method of approximate particular solutions for solving certain partial differential equations, Numer Methods Partial Diff Equ, 28, 2, 506-522, (2012) · Zbl 1242.65267
[39] Zhu, H., The method of approximate particular solutions for solving anisotropic elliptic problems, Eng Anal Bound Elem, 40, 123-127, (2014) · Zbl 1297.65172
[40] Reutskiy, S. Y., Method of particular solutions for nonlinear Poisson-type equations in irregular domains, Eng Anal Bound Elem, 37, 2, 401-408, (2013) · Zbl 1352.65573
[41] Kuo, L. H.; Gu, M. H.; Young, D. L.; Lin, C. Y., Domain type kernel-based meshless methods for solving wave equations, CMC-Comput Mater Contin, 33, 3, 213-228, (2013)
[42] Bustamante, C. A.; Power, H.; Florez, W. F.; Hang, C. Y., The global approximate particular solution meshless method for two-dimensional linear elasticity problems, Int J Comput Math, 90, 5, 978-993, (2013) · Zbl 1373.74103
[43] Bustamante, C. A.; Power, H.; Sua, Y. H.; Florez, W. F., A global meshless collocation particular solution method (integrated radial basis function) for two-dimensional Stokes flow problems, Appl Math Modell, 37, 6, 4538-4547, (2013) · Zbl 1270.76020
[44] Jiang, T.; Li, M.; Chen, C. S., The method of particular solutions for solving inverse problems of a nonhomogeneous convection-diffusion equation with variable coefficients, Numer Heat Transf, Part A: Appl, 61, 5, 338-352, (2012)
[45] Yao, G.; Siraj ul, I.; Sarler, B., Assessment of global and local meshless methods based on collocation with radial basis functions for parabolic partial differential equations in three dimensions, Eng Anal Bound Elem, 36, 11, 1640-1648, (2012) · Zbl 1352.65403
[46] Reutskiy, S. Y., Method of particular solutions for solving PDEs of the second and fourth orders with variable coefficients, Eng Anal Bound Elem, 37, 10, 1305-1310, (2013) · Zbl 1287.65136
[47] Bustamante, C. A.; Power, H.; Florez, W. F., A global meshless collocation particular solution method for solving the two-dimensional Navier-Stokes system of equations, Comput Math Appl, 65, 12, 1939-1955, (2013) · Zbl 1383.76366
[48] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[49] Cuesta, E.; Lubich, C.; Palencia, C., Convolution quadrature time discretization of fractional diffusion-wave equations, Math Comput, 75, 254, 673-696, (2006) · Zbl 1090.65147
[50] Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA paper; 1981-1259.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.