×

Canonical partition relations for \((m,p,c)\)-systems. (English) Zbl 0878.05080

In order to develop an infinite version of the coloring theorems on finite sums in [W. Deuber, Partitionen und lineare Gleichungssysteme, Math. Z. 133, 109-123 (1973; Zbl 0254.05011)] and [H. Lefmann, A canonical version for partition regular systems of linear equations, J. Comb. Theory, Ser. A 41, 95-104 (1986; Zbl 0583.05006)], a number of results about sequences of \((m,p,c)\)-sets are presented. Here, an \((m,p,c)\)-system on \((x_1,\dots,x_m)\) is a set of positive integers \[ \Biggl\{\sum^m_{i= t+1}\lambda_ix_i+ cx_t:t\in\{1,\dots, m\} \& \lambda_i\in\{0,\dots, p\}\Biggr\}. \] Letting \(\overline x\in V=\prod^\infty_{n=1}\mathbb{N}^n\), we can imagine \(S(\overline x,n)\) as being the \((n,n\cdot n!,n!)\)-set of \(\overline x(n)\), and \[ \text{FS}(\langle S(\overline x,n)\rangle_{n\in M})= \Biggl\{\sum_{n\in F}w_n:F\subseteq M \& F\text{ finite }\& \forall n(w_n\in S(\overline x,n))\Biggr\}. \] Each sequence \(\overline x\in V\) generates its own sequence of \((m,p,c)\)-sets and hence its own sequence of finite sums from elements of \((m,p,c)\)-sets.
The first few sections present some results about comparing these sets of finite sums from one sequence \(\overline x\) to that of a ‘refinement’ \(\overline y\). Using these results, and assuming a conjecture of [P. Erdös and R. Graham, Old and new problems and results in combinatorial number theory, Monographies No. 28 de l’Enseignment Mathematique (1980; Zbl 0434.10001)], it is shown that all colorings of the finite sums of some sufficiently nice \(\overline x\) are well-behaved on the finite sums of some refinement \(\overline y\) of \(\overline x\).
Reviewer: G.L.McColm (Tampa)

MSC:

05D10 Ramsey theory
05A18 Partitions of sets
Full Text: DOI

References:

[1] Deuber, W., Partitionen und lineare Gleichungssysteme, Math. Zeit., 133, 109-123 (1973) · Zbl 0254.05011
[2] Deuber, W.; Hindman, N., Partitions and sums of (m, p, c)-sets, J. Combin. Theory Ser. A, 45, 300-302 (1987) · Zbl 0661.05008
[3] Erdős, P.; Graham, R., Old and New Problems and Results in Combinatorial Number Theory, Monographies de l’Enseignement Math., Vol., 28 (1980) · Zbl 0434.10001
[4] Erdős, P.; Rado, R., A Combinatorial Theorem, J. London Math. Soc., 25, 249-255 (1950) · Zbl 0038.15301
[5] Graham, R.; Rothschild, B.; Spencer, J., Ramsey Theory (1990), Wiley: Wiley New York · Zbl 0705.05061
[6] Hilbert, D., Über die Irreduzibilität Ganzer Rationaler Funktionen mit Ganzzahligen Koeffizienten, J. Math., 110, 104-129 (1982) · JFM 24.0087.03
[7] Hindman, N.; Lefmann, H., Partition regularity of (M, P, C)-systems, J. Combin. Theory Ser. A, 64, 1-9 (1993) · Zbl 0785.05013
[8] Lefmann, H., A canonical version for partition regular systems of linear equations, J. Combin. Theory Ser. A, 41, 95-104 (1986) · Zbl 0583.05006
[9] Taylor, A., A canonical partition relation for finite subsets of ω, J. Combin Theory Ser. A, 21, 137-146 (1976) · Zbl 0341.05010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.