×

Congruence subgroups and super-modular categories. (English) Zbl 06909759

Summary: A super-modular category is a unitary premodular category with Müger center equivalent to the symmetric unitary category of super-vector spaces. Super-modular categories are important alternatives to modular categories as any unitary premodular category is the equivariantization of a either a modular or super-modular category. Physically, super-modular categories describe universal properties of quasiparticles in fermionic topological phases of matter. In general one does not have a representation of the modular group \(\operatorname{SL}(2,\mathbb{Z})\) associated to a super-modular category, but it is possible to obtain a representation of the (index 3) \(\theta\)-subgroup: \(\Gamma_\theta<\operatorname{SL}(2,\mathbb{Z})\). We study the image of this representation and conjecture a super-modular analogue of the Ng-Schauenburg congruence subgroup theorem for modular categories, namely that the kernel of the \(\Gamma_\theta\) representation is a congruence subgroup. We prove this conjecture for any super-modular category that is a subcategory of modular category of twice its dimension, i.e., admitting a minimal modular extension. Conjecturally, every super-modular category admits (precisely 16) minimal modular extensions and our conjecture would be a consequence.

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)

References:

[1] 10.1007/BF01210925 · Zbl 0605.58049 · doi:10.1007/BF01210925
[2] ; Bakalov, Lectures on tensor categories and modular functors. University Lecture Series, 21 (2001) · Zbl 0965.18002
[3] 10.4171/QT/95 · Zbl 1378.57040 · doi:10.4171/QT/95
[4] 10.1090/S0273-0979-1981-14930-2 · Zbl 0471.10028 · doi:10.1090/S0273-0979-1981-14930-2
[5] 10.1007/s00220-005-1341-6 · Zbl 1079.81061 · doi:10.1007/s00220-005-1341-6
[6] 10.1215/S0012-7094-96-08211-3 · Zbl 0854.57025 · doi:10.1215/S0012-7094-96-08211-3
[7] 10.1088/1742-5468/2013/09/P09016 · Zbl 1456.82576 · doi:10.1088/1742-5468/2013/09/P09016
[8] 10.1006/jsco.1996.0125 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[9] 10.1007/s002080050011 · Zbl 0943.18004 · doi:10.1007/s002080050011
[10] 10.1090/jams/842 · Zbl 1344.18008 · doi:10.1090/jams/842
[11] 10.1093/imrn/rnw020 · Zbl 1404.18016 · doi:10.1093/imrn/rnw020
[12] 10.1063/1.4982048 · Zbl 1365.81098 · doi:10.1063/1.4982048
[13] 10.1515/crelle.2012.014 · Zbl 1271.18008 · doi:10.1515/crelle.2012.014
[14] 10.1007/s00029-012-0093-3 · Zbl 1345.18005 · doi:10.1007/s00029-012-0093-3
[15] ; Deligne, The Grothendieck Festschrift, II. Progr. Math., 87, 111 (1990)
[16] 10.1007/s00029-010-0017-z · Zbl 1201.18005 · doi:10.1007/s00029-010-0017-z
[17] 10.1007/BF02101810 · Zbl 0884.17018 · doi:10.1007/BF02101810
[18] 10.1007/BF02941367 · Zbl 0652.10020 · doi:10.1007/BF02941367
[19] 10.1103/PhysRevB.94.155113 · doi:10.1103/PhysRevB.94.155113
[20] 10.1112/S0024611503014187 · Zbl 1037.18005 · doi:10.1112/S0024611503014187
[21] 10.1016/j.jalgebra.2004.02.026 · Zbl 1052.18004 · doi:10.1016/j.jalgebra.2004.02.026
[22] 10.1007/s00220-010-1096-6 · Zbl 1206.18007 · doi:10.1007/s00220-010-1096-6
[23] 10.1007/BF02568170 · Zbl 0346.20022 · doi:10.1007/BF02568170
[24] 10.1007/BF02941169 · JFM 55.0083.02 · doi:10.1007/BF02941169
[25] 10.1006/aima.2000.1935 · Zbl 0994.57011 · doi:10.1006/aima.2000.1935
[26] 10.1007/s11467-011-0194-z · doi:10.1007/s11467-011-0194-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.