×

\(L^ 2-\)homology over traced *-algebras. (English) Zbl 0878.46053

Summary: Given a unital complex *-algebra \(A\), a tracial positive linear functional \(\tau\) on \(A\) that factors through a *-representation of \(A\) on Hilbert space, and an \(A\)-module \(M\) possessing a resolution by finitely generated projective \(A\)-modules, we construct homology spaces \(H_k(A,\tau,M)\) for \(k = 0, 1, \ldots\). Each is a Hilbert space equipped with a *-representation of \(A\), independent (up to unitary equivalence) of the given resolution of \(M\). A short exact sequence of \(A\)-modules gives rise to a long weakly exact sequence of homology spaces. There is a Künneth formula for tensor products. The von Neumann dimension which is defined for \(A\)-invariant subspaces of \(L^2(A,\tau)^n\) gives well-behaved Betti numbers and an Euler characteristic for \(M\) with respect to \(A\) and \(\tau\).

MSC:

46M20 Methods of algebraic topology in functional analysis (cohomology, sheaf and bundle theory, etc.)
46K10 Representations of topological algebras with involution
16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras
17B37 Quantum groups (quantized enveloping algebras) and related deformations
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
Full Text: DOI

References:

[1] D. Arapura, P. Bressler, and M. Ramachandran, On the fundamental group of a compact Kähler manifold, Duke Math. J. 68 (1992), no. 3, 477 – 488. · Zbl 0783.57009 · doi:10.1215/S0012-7094-92-06819-0
[2] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque ”Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) Soc. Math. France, Paris, 1976, pp. 43 – 72. Astérisque, No. 32-33. · Zbl 0323.58015
[3] M. E. B. Bekka, A. Valette, Group cohomology, harmonic functions and the first \(L^2\)-Betti number, preprint, 1994. · Zbl 0882.22013
[4] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. · Zbl 0584.20036
[5] Jeff Cheeger and Mikhael Gromov, Bounds on the von Neumann dimension of \?²-cohomology and the Gauss-Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985), no. 1, 1 – 34. · Zbl 0614.53034
[6] Jeff Cheeger and Mikhael Gromov, \?\(_{2}\)-cohomology and group cohomology, Topology 25 (1986), no. 2, 189 – 215. · Zbl 0597.57020 · doi:10.1016/0040-9383(86)90039-X
[7] Joel M. Cohen, von Neumann dimension and the homology of covering spaces, Quart. J. Math. Oxford Ser. (2) 30 (1979), no. 118, 133 – 142. · Zbl 0421.46056 · doi:10.1093/qmath/30.2.133
[8] Jozef Dodziuk, de Rham-Hodge theory for \?²-cohomology of infinite coverings, Topology 16 (1977), no. 2, 157 – 165. · Zbl 0348.58001 · doi:10.1016/0040-9383(77)90013-1
[9] Naihuan Jing and James Zhang, Quantum Weyl algebras and deformations of \?(\?), Pacific J. Math. 171 (1995), no. 2, 437 – 454. · Zbl 0861.17007
[10] Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL, 1986. Advanced theory. · Zbl 0601.46054
[11] William L. Paschke, A numerical invariant for finitely generated groups via actions on graphs, Math. Scand. 72 (1993), no. 1, 148 – 160. · Zbl 0812.20020 · doi:10.7146/math.scand.a-12442
[12] William L. Paschke, An invariant for finitely presented \?\?-modules, Math. Ann. 301 (1995), no. 2, 325 – 337. · Zbl 0813.43004 · doi:10.1007/BF01446632
[13] Jonathan Rosenberg, Algebraic \?-theory and its applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994. · Zbl 0801.19001
[14] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. · Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.