×

The \(\delta_\alpha^0\)-computable enumerations of the classes of projective planes. (English. Russian original) Zbl 1522.03128

Sib. Math. J. 59, No. 2, 252-263 (2018); translation from Sib. Mat. Zh. 59, No. 2, 321-336 (2018).
Summary: Studying computable representations of projective planes, for the classes \(K\) of pappian, desarguesian, and all projective planes, we prove that \(K^c/_\simeq\) admits no hyperarithmetical Friedberg enumeration and admits a Friedberg \(\Delta_{\alpha+3}^0\)-computable enumeration up to a \(\Delta_\alpha^0\)-computable isomorphism.

MSC:

03C57 Computable structure theory, computable model theory
03D45 Theory of numerations, effectively presented structures
51A05 General theory of linear incidence geometry and projective geometries
Full Text: DOI

References:

[1] Kogabaev, N. T., The class of projective planes is noncomputable, Algebra and Logic, 47, 242-257, (2008) · Zbl 1164.03330 · doi:10.1007/s10469-008-9015-z
[2] Kogabaev, N. T., Noncomputability of classes of pappian and Desarguesian projective planes, Sib. Math. J., 54, 247-255, (2013) · Zbl 1273.03122 · doi:10.1134/S0037446613020092
[3] Bazhenov, N. A., Computable numberings of the class of Boolean algebras with distinguished endomorphisms, Algebra and Logic, 52, 355-366, (2013) · Zbl 1337.03063 · doi:10.1007/s10469-013-9247-4
[4] Shirshov A. I. and Nikitin A. A., The Algebraic Theory of Projective Planes [Russian], Novosibirsk Univ., Novosibirsk (1987). · Zbl 0692.51001
[5] Rogers H., Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Comp., New York, St. Louis, San Francisco, Toronto, London, and Sydney (1972). · Zbl 0183.01401
[6] Ershov Yu. L. and Goncharov S. S., Constructive Models, Kluwer Academic/Plenum Publishers, New York, etc. (2000). · Zbl 0954.03036 · doi:10.1007/978-1-4615-4305-3
[7] Goncharov, S. S.; Knight, J. F., Computable structure and non-structure theorems, Algebra and Logic, 41, 351-373, (2002) · Zbl 1034.03044 · doi:10.1023/A:1021758312697
[8] Kogabaev, N. T., Complexity of isomorphism problem for computable projective planes, J. Math. Sci., 203, 509-515, (2014) · doi:10.1007/s10958-014-2154-y
[9] Calvert, W., The isomorphism problem for computable abelian p-groups of bounded length, J. Symb. Log., 70, 331-345, (2005) · Zbl 1099.03031 · doi:10.2178/jsl/1107298523
[10] Rabin, M. O., Computable algebra, general theory and theory of computable fields, Trans. Amer. Math. Soc., 95, 341-360, (1960) · Zbl 0156.01201
[11] Friedman, H.; Stanley, L., A Borel reducibility theory for classes of countable structures, J. Symb. Log., 54, 894-914, (1989) · Zbl 0692.03022 · doi:10.2307/2274750
[12] Calvert, W., The isomorphism problem for classes of computable fields, Arch. Math. Log., 43, 327-336, (2004) · Zbl 1059.03039 · doi:10.1007/s00153-004-0219-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.