×

Solutions almost periodic at infinity to differential equations with unbounded operator coefficients. (English. Russian original) Zbl 1398.34086

Sib. Math. J. 59, No. 2, 231-242 (2018); translation from Sib. Mat. Zh. 59, No. 2, 293-308 (2018).
Let \(J\) be either \(\mathbb R\) or \(\mathbb R_+\), \(X\) be a complex Banach space and \(A\) be a linear operator on \(X\) which generates a strongly continuous semigroup \(U: \mathbb R_{+}\mapsto X\). Consider the differential equation \[ x'(t)-Ax(t)=\psi(t)\text{ for } t\in J.\eqno(1) \] A continuous function \(x:J\mapsto X\) is called a mild solution to (1) if \[ x(t)=U(t-s)x(s)+\int_s^tU(t-\tau)\psi(\tau)d\tau \] for all \(s,t \in J\) with \(s\leq t\). In this paper, the authors give several, but equivalent definitions of the space of functions almost periodic at infinity, a new class of functions in \(C_{b, u}(J, X)\), the space of bounded, uniformly continuous functions from \(J\) to \(X\).
As the main results, the authors obtain sufficient spectral conditions on \(A\) for the existence of mild solutions of (1) which are almost periodic at infinity.

MSC:

34G10 Linear differential equations in abstract spaces
34C27 Almost and pseudo-almost periodic solutions to ordinary differential equations
47D07 Markov semigroups and applications to diffusion processes
Full Text: DOI

References:

[1] Bochner, S., Uber genisse differential and allgemeiner gleichungen deren losungen fastperiodisch sind, Math. Ann., Bd, 103, 588-597, (1930) · JFM 56.1043.01 · doi:10.1007/BF01455712
[2] Bochner, S.; Neumann, J. V., Almost periodic functions in groups. II, Trans. Amer. Math. Soc., 37, 21-50, (1935) · JFM 61.0470.06
[3] Levitan, B. M., On an integral equation with almost periodic solutions, Bull. Amer. Math. Soc., 43, 677-679, (1935) · Zbl 0017.35704 · doi:10.1090/S0002-9904-1937-06624-9
[4] Loomis, L. H., The spectral characterization of a class of almost periodic functions, Ann. Math., 72, 362-368, (1960) · Zbl 0094.05801 · doi:10.2307/1970139
[5] Foias, C.; Zaidman, S., Almost-periodic solutions of parabolic systems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 15, 247-262, (1961) · Zbl 0100.30303
[6] Doss, R., On the almost periodic solutions of a class of integro-differential-difference equations, Ann. Math., 81, 117-123, (1965) · Zbl 0142.39401 · doi:10.2307/1970387
[7] Staffans, O. J., On asymptotically almost periodic solutions of a convolution equation, Trans. Amer. Math. Soc., 226, 603-616, (1981) · Zbl 0474.45002 · doi:10.1090/S0002-9947-1981-0617554-5
[8] Baskakov, A. G., Some criteria for almost periodicity of bounded functions, Tr. NII Mat. Voronezh Gos. Univ., 11, 10-16, (1973)
[9] Baskakov A. G., Some Problems of the Theory of Almost Periodic Vector Functions [Russian], Diss. Kand. Fiz.-Mat. Nauk, Voronezh (1973).
[10] Baskakov, A. G., Spectral criteria for almost periodicity of solutions of functional equations, Math. Notes, 24, 606-612, (1978) · Zbl 0423.34096 · doi:10.1007/BF01105312
[11] Levitan B. M. and Zhikov V. V., Almost-Periodic Functions and Differential Equations [Russian], Izdat. MGU, Moscow (1978). · Zbl 0414.43008
[12] Baskakov, A. G., Harmonic analysis of cosine and exponential operator-valued functions, Math. USSR-Sb., 52, 63-90, (1985) · Zbl 0569.43004 · doi:10.1070/SM1985v052n01ABEH002878
[13] Lyubich, Yu.; Vu, Q. Ph., Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88, 37-42, (1988) · Zbl 0639.34050 · doi:10.4064/sm-88-1-37-42
[14] Arendt, W.; Batty, C. J. K., Asymptotically almost periodic solutions of inhomogeneous Cauchy problems on the half-line, Bull. London Math. Soc., 31, 291-304, (1999) · Zbl 0952.34048 · doi:10.1112/S0024609398005657
[15] Basit, B., Harmonic analysis and asymptotic behavior of solutions to the abstract Cauchy problem, Semigroup Forum, 54, 58-74, (1994) · Zbl 0868.47027 · doi:10.1007/BF02676587
[16] Basit, B., Some problems concerning different types of vector valued almost periodic functions, Dissertation Math., 338, 26, (1995) · Zbl 0828.43004
[17] Ruess, W. M.; Vu, Q. Ph., Asymptotically almost periodic solutions of evolution equations in Banach spaces, J. Differential Equations, 122, 282-301, (1995) · Zbl 0837.34067 · doi:10.1006/jdeq.1995.1149
[18] Baskakov, A. G., Representation theory for Banach algebras, abelian groups, and semigroups in the spectral analysis of linear operators, J. Math. Sci., 137, 4885-5036, (2006) · Zbl 1098.47005 · doi:10.1007/s10958-006-0286-4
[19] Baskakov A. G., Harmonic Analysis in Banach Modules and the Spectral Theory of Linear Operators [Russian], VSU Publ. House, Voronezh (2016).
[20] Sobolev, S. L., On almost periodicity for solutions of a wave equation. I-III, Dokl. Akad. Nauk SSSR, I, 48, 570-573, (1945)
[21] Levitan, B. M., Integration of almost periodic functions with values in a Banach space, Izv. Akad. Nauk SSSR Ser. Mat., 30, 1101-1110, (1966) · Zbl 0146.31801
[22] Kadets, M. I., On the integration of almost periodic functions with values in a Banach space, Funct. Anal. Appl., 3, 228-230, (1969) · Zbl 0206.42903 · doi:10.1007/BF01676624
[23] Baskakov, A. G., Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations, Russian Math. Surveys, 68, 69-116, (2013) · Zbl 1279.34069 · doi:10.1070/RM2013v068n01ABEH004822
[24] Baskakov, A. G., Harmonic and spectral analysis of power bounded operators and bounded semigroups of operators on Banach spaces, Math. Notes, 97, 164-178, (2015) · Zbl 1328.47043 · doi:10.1134/S0001434615010198
[25] Baskakov, A. G.; Kaluzhina, N. S., Beurling’s theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations, Math. Notes, 92, 587-605, (2012) · Zbl 1264.43008 · doi:10.1134/S0001434612110016
[26] Baskakov, A. G.; Kaluzhina, N. S.; Polyakov, D. M., Operator semigroups slowly varying at infinity, Russian Math. (Iz. VUZ), 58, 1-10, (2014) · Zbl 1310.47059 · doi:10.3103/S1066369X14070019
[27] Hewitt E. and Ross K., Abstract Harmonic Analysis. Vol. 2, Springer-Verlag, New York (1994). · Zbl 0837.43002 · doi:10.1007/978-1-4419-8638-2
[28] Baskakov, A. G.; Krishtal, I. A., Spectral analysis of abstract parabolic operators in homogeneous function spaces, Math. Notes, 92, 587-605, (2012) · Zbl 1264.43008 · doi:10.1134/S0001434612110016
[29] Arendt W., Batty C. J. K., Hieber M., and Neubrander F., Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser-Verlag, Basel (2011) (Monogr. Math.; vol. 96). · Zbl 1226.34002 · doi:10.1007/978-3-0348-0087-7
[30] Domar, Y., Harmonic analysis based on certain commutative Banach algebras, Acta Math., 96, 1-66, (1956) · Zbl 0071.11302 · doi:10.1007/BF02392357
[31] Reiter H. and Stegeman I. D., Classical Harmonic Analysis and Locally Compact Groups, Clarendon Press, Oxford (1968). · Zbl 0965.43001
[32] Emel’yanov, È Yu. Yu., Some conditions for a \(C\)_{0}-semigroup to be asymptotically finite-dimensional, Sib. Math. J., 44, 793-796, (2003) · Zbl 1029.47024 · doi:10.1023/A:1025976401206
[33] Emel’yanov E. Yu., Non-Spectral Asymptotic Analysis of One-Parameter Operator Semigroups, Birkhäuser-Verlag, Basel (2007). · Zbl 1117.47001
[34] Storozhuk, K. V., A condition for asymptotic finite-dimensionality of an operator semigroup, Sib. Math. J., 52, 1104-1107, (2011) · Zbl 1242.47035 · doi:10.1134/S0037446611060152
[35] Storozhuk, K. V., Slowly changing vectors and the asymptotic finite-dimensionality of an operator semigroup, Sib. Math. J., 50, 737-740, (2009) · Zbl 1219.47060 · doi:10.1007/s11202-009-0084-6
[36] Baskakov, A.; Strukova, I., Harmonic analysis of functions periodic at infinity, Eurasian Math. J., 7, 9-29, (2016) · Zbl 1463.34059
[37] Strukova, I. I., On wiener’s theorem for functions periodic at infinity, Sib. Math. J., 57, 145-154, (2016) · Zbl 1344.42005 · doi:10.1134/S0037446616010146
[38] Ryzhkova, A. A.; Trishina, I. A., Solutions almost periodic at infinity of difference equations, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 15, 45-49, (2015) · Zbl 1326.39012 · doi:10.18500/1816-9791-2015-15-1-45-49
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.