×

Prime algebras connected with monsters. (English. Russian original) Zbl 1452.17028

Sib. Math. J. 59, No. 2, 341-356 (2018); translation from Sib. Mat. Zh. 59, No. 2, 433-452 (2018).
Let \(A\) be an algebra (not necessarily associative) over a field \(\Phi\) of characteristic different from 2 and 3. Denoting the product in \(A\) by juxtaposition one forms the bracket \([a,b]=ab-ba\) and the symmetrized product \(a\bullet b=(ab+ba)/2\), \(a\), \(b\in A\). Let also \((a,b,c)=(ab)c-a(bc)\) be the usual associator of \(a\), \(b\), \(c\in A\). For \(\gamma\), \(\delta\in\Phi\) such that \(\gamma^2-\delta^2+\delta-1=0\), the variety of \((\gamma,\delta)\)-algebras is defined by the identities \((x,x,x)=0\), \((x,y,z)+\gamma(y,z,x)+\delta(z,x,y)=0\), \((x,y,z)-\gamma(x,z,y)+(1-\delta)(y,z,x)=0\). It is easy to see that \((-1,1)\)-algebras are exactly right-alternative algebras satisfying the Jacobi identity.
If \(A\) is a right-alternative or Jordan algebra then \(a\in A\), \(a\ne 0\) is an absolute zero divisor if \(a^2=0\) and \(aAa=0\). If \(A\) has no absolute zero divisors it is nondegenerate, otherwise it is called degenerate. A prime degenerate algebra is called a monster. The existence of monster algebras was established by the author of the present paper in [S. V. Pchelintsev, Algebra Logic 24, 441–454 (1985; Zbl 0603.17014); translation from Algebra Logika 24, No. 6, 674–695 (1985)], and in [S. V. Pchelintsev, Math. USSR, Izv. 28, 79–98 (1987); translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50, No. 1, 79–100 (1986; Zbl 0609.17008)].
The paper under review studies primeness properties of right-alternative and of Jordan algebras and their relations. Recall that \(A\) is strongly \((-1,1)\)-algebra (St-algebra for short) if it is prime nonassociative \((-1,1)\)-algebra; they satisfy also the identity \([[x,y],z]=0\). One of the main results in the paper under review states that if \(A\) is St-algebra, generated by a Jordan subalgebra \(J\) then \(J\) is prime as well. Moreover it is proved that the converse also holds, in a sense. Call \(A\) an St-envelope of \(J\). Then if \(J\) is prime then there exists an appropriate St-envelope which is prime. (The algebra \(J\) is called then St-special.) Furthermore the author proves that ideals of prime St-special Jordan algebras are also prime. A corollary to this theorem is that metaideals of a Jordan monster are prime algebras.
Finally the author studies prime algebras in characteristic \(p>3\). He proves that prime nil-algebras related to the monster algebras, satisfy the identity \(x^p=0\). Moreover if \(A\) is strongly \((-1,1)\)-algebra then its associator ideal satisfies that same identity.

MSC:

17C05 Identities and free Jordan structures
17D20 \((\gamma, \delta)\)-rings, including \((1,-1)\)-rings
Full Text: DOI

References:

[1] Pchelintsev, S. V., Nilpotent elements and nil-radicals of alternative algebras, Algebra and Logic, 24, 441-454, (1985) · Zbl 0603.17014 · doi:10.1007/BF01978847
[2] Pchelintsev, S. V., Prime algebras and absolute zero divisors, Math. USSR Izv., 28, 79-98, (1987) · Zbl 0615.17011 · doi:10.1070/IM1987v028n01ABEH000868
[3] McCrimmon K., A Taste of Jordan Algebras, Springer-Verlag, New York (2004). · Zbl 1044.17001
[4] Medvedev, Yu. A.; Zelmanov, E. I., Some counterexamples in the theory of Jordan algebras, 1-16, (1992), Commack, New York · Zbl 0941.17504
[5] Shestakov, I. P., Superalgebras and counterexamples, Sib. Math. J., 32, 1052-1060, (1991) · Zbl 0777.17004 · doi:10.1007/BF00971214
[6] Pchelintsev, S. V.; Shestakov, I. P., Prime (-1, 1) and Jordan monsters and superalgebras vector type, J. Algebra, 423, 54-86, (2015) · Zbl 1369.17029 · doi:10.1016/j.jalgebra.2014.09.034
[7] Zhevlakov K. A., Slin’ko A. M., Shestakov I. P., and Shirshov A. I., Rings That Are Nearly Associative, Academic Press, New York (1982). · Zbl 0487.17001
[8] Hentzel, I. R., The characterization of (-1, 1)-rings, J. Algebra, 30, 236-258, (1974) · Zbl 0284.17001 · doi:10.1016/0021-8693(74)90200-2
[9] Filippov, V. T., Prime Mal’tsev algebras, Math. Notes, 31, 341-345, (1982) · Zbl 0494.17012 · doi:10.1007/BF01145710
[10] Zelmanov, E. I., On prime Jordan algebras. II, Sib. Math. J., 24, 89-104, (1983)
[11] Skosyrsky, V. G., Right alternative algebras, Algebra and Logic, 23, 131-136, (1984) · Zbl 0572.17013 · doi:10.1007/BF01979706
[12] Pchelintsev, S. V., Prime alternative algebras that are nearly commutative, Izv. Math., 68, 181-204, (2004) · Zbl 1071.17024 · doi:10.1070/IM2004v068n01ABEH000470
[13] Pchelintsev, S. V., Exceptional prime alternative algebras, Sib. Math. J., 48, 1060-1073, (2007) · Zbl 1164.17023 · doi:10.1007/s11202-007-0108-z
[14] Pchelintsev, S. V., Degenerate alternative algebras, Sib. Math. J., 55, 323-335, (2014) · Zbl 1310.17018 · doi:10.1134/S0037446614020153
[15] Pchelintsev, S. V., Isotopes of the alternative monster and the skosyrsky algebra, Sib. Math. J., 57, 666-678, (2016) · Zbl 1378.17049 · doi:10.1134/S0037446616040091
[16] Pchelintsev, S. V., Isotopes of prime (-1, 1)-and Jordan algebras, Algebra and Logic, 49, 262-288, (2010) · Zbl 1241.17035 · doi:10.1007/s10469-010-9095-4
[17] Pchelintsev, S. V., On the commutator nilpotency step of strictly (-1, 1)-algebras, Math. Notes, 93, 756-762, (2013) · Zbl 1328.17022 · doi:10.1134/S000143461305012X
[18] Pchelintsev, S. V., Commutator identities of the homotopes of (-1, 1)-algebras, Sib. Math. J., 54, 325-340, (2013) · Zbl 1276.17020 · doi:10.1134/S0037446613020158
[19] Kleinfeld, E., Right alternative rings, Proc. Amer. Math. Soc., 4, 939-944, (1953) · Zbl 0052.26703 · doi:10.1090/S0002-9939-1953-0059888-X
[20] Albert, A. A., Almost alternative algebras, Port. Math., 8, 23-36, (1949) · Zbl 0033.15401
[21] Kleinfeld, E., On a class of right alternative rings, Math. Z., Bd, 87, 12-16, (1965) · Zbl 0119.27303 · doi:10.1007/BF01109923
[22] Roomel’di, R. E., Centers of a free (-1, 1)-ring, Sib. Math. J., 18, 610-622, (1978) · Zbl 0409.17002 · doi:10.1007/BF00967203
[23] Hentzel, I. R., Nil semi-simple (-1, 1)-rings, J. Algebra, 22, 442-450, (1972) · Zbl 0248.17002 · doi:10.1016/0021-8693(72)90160-3
[24] Shestakov, I. P., Prime alternative superalgebras of an arbitrary characteristic, Algebra and Logic, 36, 701-731, (1997) · Zbl 0904.17025 · doi:10.1007/BF02671556
[25] McCrimmon, K., Speciality and non-speciality of two Jordan superalgebras, J. Algebra, 149, 326-351, (1992) · Zbl 0771.17026 · doi:10.1016/0021-8693(92)90020-M
[26] Skosyrsky, V. G., Prime Jordan algebras and the Kantor construction, Algebra and Logic, 33, 169-179, (1994) · Zbl 0826.17037 · doi:10.1007/BF00750232
[27] Hentzel, I. R., Nil semi-simple locally (-1, 1)-rings, Bull. Iran. Math. Soc., 9, 11-14, (1981)
[28] Pchelintsev, S. V., Manifolds generated by free algebras of type (-1, 1) of finite rank, Sib. Math. J., 28, 299-306, (1987) · Zbl 0635.17015 · doi:10.1007/BF00970877
[29] Skosyrsky, V. G., Strongly prime noncommutative Jordan algebras, Studies on the Theory of Rings and Algebras, 16, 131-164, (1989) · Zbl 0718.17001
[30] Zelmanov, E. I., Jordan algebras with finiteness conditions, Algebra and Logic, 17, 450-457, (1979) · Zbl 0423.17007 · doi:10.1007/BF01673575
[31] Pchelintsev, S. V., On central ideals of finitely generated binary (-1, 1)-algebras, Sb. Math., 193, 585-607, (2002) · Zbl 1035.17044 · doi:10.1070/SM2002v193n04ABEH000646
[32] Roomel’di, R. E., The lower nil radical of (-1, 1) rings, Algebra and Logic, 12, 184-189, (1973) · Zbl 0296.17002 · doi:10.1007/BF02218699
[33] Pchelintsev S. V., Structure and Identities of Nilalgebras That Are Close to Associative [Russian], Diss. Dokt. Fiz.-Mat. Nauk, Moscow (1986).
[34] Pchelintsev, S. V., Identities of a free (-1, 1)-algebra of rank 3, 110-131, (1989), Novosibirsk · Zbl 0715.17032
[35] Maneri, C., Simple (-1, 1)-rings with an idempotent, Proc. Amer. Math. Soc., 14, 110-117, (1963) · Zbl 0108.26101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.