×

Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra. (English. Russian original) Zbl 06908372

Sib. Math. J. 59, No. 2, 243-251 (2018); translation from Sib. Mat. Zh. 59, No. 2, 309-320 (2018).
Summary: Suppose that \(\mathcal M\) is a von Neumann algebra of operators on a Hilbert space \(\mathcal H\) and \(\tau\) is a faithful normal semifinite trace on \(\mathcal M\). Let \(\mathcal E\), \(\mathcal F\) and \(\mathcal G\) be ideal spaces on \((\mathcal M, \tau)\). We find when a \(\tau\)-measurable operator \(X\) belongs to \(\mathcal E\) in terms of the idempotent \(P\) of \(\mathcal M\). The sets \(\mathcal E+\mathcal F\) and \(\mathcal E\cdot\mathcal F\) are also ideal spaces on \((\mathcal M,\tau)\); moreover, \(\mathcal E\cdot\mathcal F = \mathcal F\cdot\mathcal E\) and \((\mathcal E+\mathcal F)\cdot \mathcal G = \mathcal E\cdot \mathcal G+\mathcal F\cdot \mathcal G\). The structure of ideal spaces is modular. We establish some new properties of the \(L_1(\mathcal M,\tau)\) space of integrable operators affiliated to the algebra \(\mathcal M\). The results are new even for the \(\ast\)-algebra \(\mathcal M = \mathcal B(\mathcal H)\) of all bounded linear operators on \(\mathcal H\) which is endowed with the canonical trace \(\tau = \operatorname{tr}\).

MSC:

47-XX Operator theory
46-XX Functional analysis
Full Text: DOI

References:

[1] Segal, I. E., A non-commutative extension of abstract integration, Ann. Math., 57, 401-457, (1953) · Zbl 0051.34201 · doi:10.2307/1969729
[2] Muratov, M. A., Ideal subspaces in the ring of measurable operators, 51-58, (1978), Tashkent
[3] Muratov, M. A., A condition of being fundamental for ideal subspaces of measurable operators, Sb. Nauch. Tr. Tashkent Univ., 689, 37-40, (1982) · Zbl 0586.46050
[4] Muratov, M. A., Nonsymmetric ideal spaces of measurable operators, 56-60, (1984), Tashkent
[5] Chilin, V. I., The triangle inequality in the algebras of locally measurable operators, 77-81, (1986), Tashkent · Zbl 0761.46050
[6] Takesaki M., Theory of Operator Algebras. I, Springer-Verlag, Berlin (2002) (Encyclopaedia Math. Sci.; vol. 124. Operator Algebras and Non-Commutative Geometry, 5). · Zbl 0990.46034
[7] Nelson, E., Notes on non-commutative integration, J. Funct. Anal., 15, 103-116, (1974) · Zbl 0292.46030 · doi:10.1016/0022-1236(74)90014-7
[8] Yeadon, F. J., Non-commutative \(L\)\^{}{p}-spaces, Math. Proc. Cambridge Philos. Soc., 77, 91-102, (1975) · Zbl 0327.46068 · doi:10.1017/S0305004100049434
[9] Bikchentaev, A. M., On a property of \(L\)\^{}{p} spaces on semifinite von Neumann algebras, Math. Notes, 64, 159-163, (1998) · Zbl 0927.46046 · doi:10.1007/BF02310299
[10] Ber, A. F.; Levitina, G. B.; Chilin, V. I., Derivations with values in quasi-normed bimodules of locally measurable operators, Siberian Adv. Math., 25, 169-178, (2015) · Zbl 1340.47073 · doi:10.3103/S1055134415030025
[11] Gokhberg I. Ts. and Krein M. G., An Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Amer. Math. Soc., Providence (1969). · Zbl 0181.13503 · doi:10.1090/mmono/018
[12] Antonevich A. B., Linear Functional Equations. Operator Approach [Russian], Izdat. “Universitetskoe,” Minsk (1988). · Zbl 0708.47010
[13] Dodds, P. G.; Dodds, T. K.-Y.; Pagter, B., Noncommutative Köthe duality, Trans. Amer. Math. Soc., 339, 717-750, (1993) · Zbl 0801.46074
[14] Yeadon, F. J., Convergence of measurable operators, Math. Proc. Cambridge Philos. Soc., 74, 257-268, (1973) · Zbl 0272.46043 · doi:10.1017/S0305004100048052
[15] Brown, L. G.; Kosaki, H., Jensen’s inequality in semifinite von Neumann algebras, J. Operator Theory, 23, 3-19, (1990) · Zbl 0718.46026
[16] Bikchentaev, A. M., Convergence of integrable operators affiliated to a finite von Neumann algebra, Proc. Steklov Inst. Math., 293, 67-76, (2016) · Zbl 1362.46061 · doi:10.1134/S0081543816040052
[17] Bikchentaev, A. M., On idempotent τ-measurable operators affiliated to a von Neumann algebra, Math. Notes, 100, 515-525, (2016) · Zbl 1370.46038 · doi:10.1134/S0001434616090224
[18] Bikchentaev, A. M., Trace and integrable operators affiliated with a semifinite von Neumann algebra, Dokl. Math., 93, 16-19, (2016) · Zbl 1360.46055 · doi:10.1134/S1064562416010075
[19] Hansen, F., An operator inequality, Math. Ann., 246, 249-250, (1980) · Zbl 0407.47012 · doi:10.1007/BF01371046
[20] Bikchentaev, A. M., On normal τ-measurable operators affiliated with semifinite von Neumann algebras, Math. Notes, 96, 332-341, (2014) · Zbl 1326.47020 · doi:10.1134/S0001434614090053
[21] Akemann, C. A.; Anderson, J.; Pedersen, G. K., Triangle inequalities in operator algebras, Linear Multilinear Algebra, 11, 167-178, (1982) · Zbl 0485.46029 · doi:10.1080/03081088208817440
[22] Stroh, A.; West Graeme, P., Τ-compact operators affiliated to a semifinite von Neumann algebra, Proc. Roy. Irish Acad., Sect. A., 93, 73-86, (1993) · Zbl 0790.46049
[23] Bikchentaev, A. M., Integrable products of measurable operators, Lobachevskii J. Math., 37, 397-403, (2016) · Zbl 1358.47025 · doi:10.1134/S1995080216040041
[24] Bikchentaev, A. M., Block projection operators in normed solid spaces of measurable operators, Russian Math. (Iz. VUZ), 56, 75-79, (2012) · Zbl 1266.46050 · doi:10.3103/S1066369X12020107
[25] Bikchentaev, A. M., Concerning the theory of τ-measurable operators affiliated to a semifinite von Neumann algebra, Math. Notes, 98, 382-391, (2015) · Zbl 1351.46061 · doi:10.1134/S0001434615090035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.