×

Virtually semisimple modules and a generalization of the Wedderburn-Artin theorem. (English) Zbl 1430.16008

Summary: A widely used result of Wedderburn and Artin states that “every left ideal of a ring \(R\) is a direct summand of \(R\) if and only if \(R\) has a unique decomposition as a finite direct product of matrix rings over division rings.” Motivated by this, we call a module \(M\) virtually semisimple if every submodule of \(M\) is isomorphic to a direct summand of \(M\) and \(M\) is called completely virtually semisimple if every submodule of \(M\) is virtually semisimple. We show that the left \(R\)-module \(R\) is completely virtually semisimple if and only if \(R\) has a unique decomposition as a finite direct product of matrix rings over principal left ideal domains. This shows that \(R\) is completely virtually semisimple on both sides if and only if every finitely generated (left and right) \(R\)-module is a direct sum of a singular module and a projective virtually semisimple module. The Wedderburn-Artin theorem follows as a corollary from our result.

MSC:

16D60 Simple and semisimple modules, primitive rings and ideals in associative algebras
13F10 Principal ideal rings
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
16S50 Endomorphism rings; matrix rings

References:

[1] Anderson, F. W.; Fuller, K. R., Rings and Categories of Modules, 13, (1992), Springer-Verlag, New York · Zbl 0765.16001
[2] Artin, E., On the theory of hypercomplex numbers, Math. Semin. Univ. Hamb., 5, 251-260, (1927) · JFM 53.0114.03
[3] Behboodi, M.; Ghorbani, A.; Moradzadeh-Dehkordi, A.; Shojaee, S. H., On left Köthe rings and a generalization of a Köthe-Cohen-Kaplansky theorem, Proc. Am. Math. Soc., 142, 2625-2631, (2014) · Zbl 1315.16008
[4] Camillo, V. P.; Cozzens, J., A theorem on Noetherian hereditary rings, Pac. J. Math., 45, 35-41, (1973) · Zbl 0229.16002
[5] Cohn, P. M., Hereditary local rings, Nagoya Math. J., 27, 223-230, (1966) · Zbl 0154.28704
[6] Cohn, P. M., Free Ideal Rings and Localization in General Rings, (2006), Cambridge University Press, Cambridge · Zbl 1114.16001
[7] Facchini, A.; Nazemian, Z., Modules with chain conditions up to isomorphism, J. Algebra, 453, 578-601, (2016) · Zbl 1408.16017
[8] Facchini, A.; Nazemian, Z., Artinian dimension and isoradical of modules, J. Algebra, 484, 66-87, (2017) · Zbl 1401.16004
[9] Ghorbani, A.; Vedadi, M. R., Epi-retractable modules and some applications, Bull. Iranian Math. Soc., 35, 1, 155-166, (2009) · Zbl 1197.16005
[10] Goldie, A. W., Non-commutative principal ideal rings, Arch. Math., 13, 213-221, (1962) · Zbl 0101.27304
[11] Goodearl, K. R.; Warfield, R. B. Jr., An Introduction to Noncommutative Noetherian Rings, 61, (2004), Cambridge University Press, Cambridge · Zbl 1101.16001
[12] Haghany, A.; Vedadi, M. R., Study of semi-projective retractable modules, Algebra Colloq., 14, 3, 489-496, (2007) · Zbl 1132.16025
[13] Kostrikin, A. I.; Shafarevich, I. R., Algebra II, 18, (1991), Springer-Verlag, New York · Zbl 0724.00012
[14] Lam, T. Y., Lectures on Modules and Rings, 189, (1999), Springer-Verlag, New York · Zbl 0911.16001
[15] Lee, G.; Rizvi, S. T.; Roman, C. S., Direct sums of rickart modules, J. Algebra, 353, 62-78, (2012) · Zbl 1275.16005
[16] McConnell, J. C.; Robson, J. C., Noncommutative Noetherian Rings. With the Cooperation of L. W. Small, 30, (2001), American Mathematical Society, Providence, RI · Zbl 0980.16019
[17] Smith, S. P., An example of a ring Morita equivalent to the Weyl algebra A_{1}, J. Algebra, 73, 552-555, (1981) · Zbl 0468.16002
[18] Smith, P. F.; Vedadi, M. R., Submodules of direct sums of compressible modules, Commun. Algebra, 36, 3042-3049, (2008) · Zbl 1155.16004
[19] Tuganbaev, A., Rings Close to Regular, 545, (2002), Kluwer Academic Publishers, Dordrecht · Zbl 1120.16012
[20] Webber, D. B., Ideals and modules of simple Noetherian hereditary rings, J. Algebra, 16, 239-242, (1970) · Zbl 0211.06201
[21] Wedderburn, J. H. M., On hypercomplex numbers, Proc. London Math. Soc., 2, 6, 77-118, (1908) · JFM 39.0139.01
[22] Wisbauer, R., Foundations of Module and Ring Theory. A Handbook for Study and Research, 3, (1991), Gordon and Breach Science Publishers, Philadelphia, PA · Zbl 0746.16001
[23] Zelmanowitz, J., Weakly primitive rings, Commun. Algebra, 9, 23-45, (1981) · Zbl 0469.16004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.