×

Infinite-dimensional measure spaces and frame analysis. (English) Zbl 1405.60006

Summary: We study certain infinite-dimensional probability measures in connection with frame analysis. Earlier work on frame-measures has so far focused on the case of finite-dimensional frames. We point out that there are good reasons for a sharp distinction between stochastic analysis involving frames in finite vs. infinite dimensions. For the case of infinite-dimensional Hilbert space \(\mathcal H\), we study three cases of measures. We first show that, for \(\mathcal H\) infinite dimensional, one must resort to infinite dimensional measure spaces which properly contain \(\mathcal H\). The three cases we consider are: (i) Gaussian frame measures, (ii) Markov path-space measures, and (iii) determinantal measures.

MSC:

60B11 Probability theory on linear topological spaces
42C15 General harmonic expansions, frames
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)

References:

[1] Allouba, H., A differentiation theory for itô’s calculus, Stoch. Anal. Appl., 24, 367-380, (2006) · Zbl 1100.60027 · doi:10.1080/07362990500522411
[2] Au-Yeung, E.; Benedetto, J.J., Generalized Fourier frames in terms of balayage, J. Fourier Anal. Appl., 21, 472-508, (2015) · Zbl 1327.42033 · doi:10.1007/s00041-014-9369-7
[3] Bogachev, V.I.: Gaussian Measures. AMS, Providence (1998) · Zbl 0938.28010 · doi:10.1090/surv/062
[4] Bufetov, A.I., Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures. II. convergence of determinantal measures, Izv. Ross. Akad. Nauk Ser. Mat., 80, 16-32, (2016) · Zbl 1360.37020 · doi:10.4213/im8384
[5] Ehler, M., Random tight frames, J. Fourier Anal. Appl., 18, 1-20, (2012) · Zbl 1247.42026 · doi:10.1007/s00041-011-9182-5
[6] Ehler, M.; Okoudjou, K.A., Minimization of the p-th probabilistic frame potential, J. Stat. Plan. Inference, 142, 645-659, (2012) · Zbl 1229.62069 · doi:10.1016/j.jspi.2011.09.001
[7] Ehler, M.; Okoudjou, K.A., Probabilistic frames: an overview, 415-436, (2013), New York · Zbl 1262.42013 · doi:10.1007/978-0-8176-8373-3_12
[8] Fickus, M.; Jasper, J.; Mixon, D.G.; Peterson, J., Group-theoretic constructions of erasure-robust frames, Linear Algebra Appl., 479, 131-154, (2015) · Zbl 1317.42026 · doi:10.1016/j.laa.2015.04.004
[9] Gihman, I.I.; Skorohod, A.V., Measures in Hilbert spaces, (1974), Berlin
[10] Gorin, V.E.; Olshanski, G.I., Determinantal measures related to big \(q\)-Jacobi polynomials, Funct. Anal. Appl., 49, 214-217, (2015) · Zbl 1376.60016 · doi:10.1007/s10688-015-0107-y
[11] Hida, T., Si, S.: Lectures on White Noise Functionals. World Scientific, Hackensack (2008) · Zbl 1202.60117 · doi:10.1142/5664
[12] Hogan, J.A.; Lakey, J.D., Frame properties of shifts of prolate spheroidal wave functions, Appl. Comput. Harmon. Anal., 39, 21-32, (2015) · Zbl 1318.42037 · doi:10.1016/j.acha.2014.08.003
[13] Jorgensen, P.E.T., Essential selfadjointness of the graph-Laplacian, J. Math. Phys., 49, (2008) · Zbl 1152.81496 · doi:10.1063/1.2953684
[14] Jørgensen, P.E.T., A universal envelope for Gaussian processes and their kernels, J. Appl. Math. Comput., 44, 1-38, (2014) · Zbl 1310.46028 · doi:10.1007/s12190-013-0678-9
[15] Jorgensen, P.E.T.; Pearse, E.P.J., Gelfand triples and boundaries of infinite networks, N.Y. J. Math., 17, 745-781, (2011) · Zbl 1241.05080
[16] Jorgensen, P.; Tian, F., Frames and factorization of graph Laplacians, Opusc. Math., 35, 293-332, (2015) · Zbl 1359.47055 · doi:10.7494/OpMath.2015.35.3.293
[17] Kaminsky, A.B.: Extended stochastic calculus for the Poisson random measures. Nats. Akad. Nauk Ukraïn. Īnst. Mat. (15), i+16 (1996). Preprint · Zbl 1360.37020
[18] Lü, X.; Zuo, Y., Multi-fractional Lévy processes on Gelfand triple, J. Math. (Wuhan), 32, 1027-1032, (2012) · Zbl 1274.60149
[19] Lyons, R., Determinantal probability measures, Publ. Math. Inst. Hautes Études Sci., 98, 167-212, (2003) · Zbl 1055.60003 · doi:10.1007/s10240-003-0016-0
[20] Øksendal, B., Stochastic partial differential equations driven by multi-parameter white noise of Lévy processes, Q. Appl. Math., 66, 521-537, (2008) · Zbl 1153.60037 · doi:10.1090/S0033-569X-08-01090-5
[21] Olshanski, G., The quasi-invariance property for the gamma kernel determinantal measure, Adv. Math., 226, 2305-2350, (2011) · Zbl 1218.60004 · doi:10.1016/j.aim.2010.09.015
[22] Pehlivan, S.; Han, D.; Mohapatra, R., Spectrally two-uniform frames for erasures, Oper. Matrices, 9, 383-399, (2015) · Zbl 1342.42033 · doi:10.7153/oam-09-23
[23] Pesenson, I.Z., Average sampling and space-frequency localized frames on bounded domains, J. Complex., 31, 675-688, (2015) · Zbl 1328.42010 · doi:10.1016/j.jco.2015.04.003
[24] Quan, Y.; Ji, H.; Shen, Z., Data-driven multi-scale non-local wavelet frame construction and image recovery, J. Sci. Comput., 63, 307-329, (2015) · Zbl 1331.68273 · doi:10.1007/s10915-014-9893-2
[25] Tamer, T., Nonstandard proofs of Herglotz, Bochner and Bochner-minlos theorems, J. Fourier Anal. Appl., 21, 1-10, (2015) · Zbl 1315.26035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.