×

Some enumeration problems on central configurations at the bifurcation points. (English) Zbl 1416.70011

Summary: In “Counting central configurations at the bifurcation points,” we proposed an algorithm to rigorously count central configurations in some cases that involve one parameter. Here, we improve our algorithm to consider three harder cases: the planar \((3+1)\)-body problem with two equal masses; the planar 4-body problem with two pairs of equal masses which have an axis of symmetry containing one pair of them; the spatial 5-body problem with three equal masses at the vertices of an equilateral triangle and two equal masses on the line passing through the center of the triangle and being perpendicular to the plane containing it.
While all three problems have been studied in two parameter cases, numerical observations suggest new results at some points on the bifurcation curves. Applying the improved version of our algorithm, we count at those bifurcation points. As a result, for the \((3+1)\)-body problem, we identify three points on the bifurcation curve where there are 8 central configurations, which adds to the known results of 8, 9, 10 ones. For our 4-body case, at the bifurcation points, there are 3 concave central configurations, which adds to the known results of \(2,4\) ones. For our 5-body case, at the bifurcation point, there is 1 concave central configuration, which adds to the known results of \(0,2\) ones.

MSC:

70F10 \(n\)-body problems
70-08 Computational methods for problems pertaining to mechanics of particles and systems

Software:

Mathematica
Full Text: DOI

References:

[1] Albouy, A.; Kaloshin, V., Finiteness of central configurations of five bodies in the plane, Ann. Math., 176, 535-588, (2012) · Zbl 1362.70014 · doi:10.4007/annals.2012.176.1.10
[2] Alvarez-Ramírez, M.; Llibre, J., The symmetric central configurations of the 4-body problem with masses \(m_{1}=m_{2}≠ m_{3}=m_{4}\), Appl. Math. Comput., 219, 5996-6001, (2013) · Zbl 1273.70018
[3] Arenstorf, R.F., Central configurations of four bodies with one inferior mass, Celest. Mech., 28, 9-15, (1982) · Zbl 0507.70008 · doi:10.1007/BF01230655
[4] Barros, J.; Leandro, E.S.G., The set of degenerate central configurations in the planar restricted four body problem, SIAM J. Math. Anal., 43, 634-661, (2011) · Zbl 1315.70005 · doi:10.1137/100789701
[5] Barros, J.; Leandro, E.S.G., Bifurcations and enumeration of classes of relative equilibria in the planar restricted four body problem, SIAM J. Math. Anal., 46, 1185-1203, (2014) · Zbl 1391.70025 · doi:10.1137/130911342
[6] Buchberger: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Ph.D. dissertation, University of Innsbruck (1965). English translation by Michael Abramson in J. Symb. Comput. 41, 471-511 (2006) · Zbl 1158.01307
[7] Cohen, A.M., Cuypers, H., Sterk, H. (eds.): Some Tapas of Computer Algebra. Springer, Berlin (1999) · Zbl 0924.13021
[8] Collins, G.E.; Krandick, W.; Wang, P.S. (ed.), An efficient algorithm for infallible polynomial complex root isolation, 189-194, (1992) · Zbl 0964.68582
[9] Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, an Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergrad. Texts Math. Springer, New York (1992) · Zbl 0756.13017
[10] Érdi, B.; Czirják, Z., Central configurations of four bodies with an axis of symmetry, Celest. Mech. Dyn. Astron., 125, 33-70, (2016) · Zbl 1342.74052 · doi:10.1007/s10569-016-9672-5
[11] Gannaway, J.R.: Determination of all central configurations in the planar four-body problem with one inferior mass. Ph.D. thesis, Vanderbilt University, Nashville, TN (1981) · Zbl 1097.70011
[12] Gonzales-Vega, L.; Traverso, C.; Zanoni, A., Hilbert stratification and parametric Gröbner bases, No. 3781, 220-235, (2005) · Zbl 1169.68662
[13] Hagihara, Y.: Celestial Mechanics, vol. 1. MIT Press, Cambridge (1970) · Zbl 0242.70003
[14] Hampton, M.; Moeckel, R., Finiteness of relative equilibria of the four-body problem, Invent. Math., 163, 289-312, (2006) · Zbl 1083.70012 · doi:10.1007/s00222-005-0461-0
[15] Kulevich, J.L.; Roberts, G.E.; Smith, C.J., Finiteness in the planar restricted four-body problem, Qual. Theory Dyn. Syst., 8, 357-370, (2009) · Zbl 1195.70021 · doi:10.1007/s12346-010-0006-9
[16] Leandro, E.S.G., Finiteness and bifurcations of some symmetrical classes of central configurations, Arch. Ration. Mech. Anal., 167, 147-177, (2003) · Zbl 1032.70007 · doi:10.1007/s00205-002-0241-6
[17] Leandro, E.S.G., On the central configurations of the planar restricted four-body problem, J. Differ. Equ., 226, 323-351, (2006) · Zbl 1097.70011 · doi:10.1016/j.jde.2005.10.015
[18] Michelucci, D.; Foufou, S., Using Cayley-Menger determinants for geometry constraint solving, 285-290, (2004)
[19] Pedersen, P.: Librationspunkte im restringierten Vierkörperproblem. Danske Vid. Selsk. Math. Fys. 21, 1-80 (1944) · Zbl 0063.06145
[20] Rusu, D.; Santoprete, M., Bifurcations of central configurations in the four-body problem with some equal masses, SIAM J. Appl. Dyn. Syst., 15, 440-458, (2016) · Zbl 1333.70020 · doi:10.1137/151002484
[21] Saari, D., On the role and properties of N body central configurations, Celest. Mech., 21, 9-20, (1980) · Zbl 0422.70014 · doi:10.1007/BF01230241
[22] Simó, C., Relative equilibrium solutions in the four body problem, Celest. Mech. Dyn. Astron., 18, 165-184, (1978) · Zbl 0394.70009 · doi:10.1007/BF01228714
[23] Smale, S., Mathematical problems for the next century, Math. Intell., 20, 7-15, (1998) · Zbl 0947.01011 · doi:10.1007/BF03025291
[24] Tsai, Y.: Real root counting for parametric polynomial systems and Applications. Ph.D. Thesis (2011)
[25] Tsai, Y., Counting central configurations at the bifurcation points, Acta Appl. Math., 144, 99-120, (2016) · Zbl 1398.70032 · doi:10.1007/s10440-016-0042-9
[26] Tsai, Y.: Some enumeration problems on central configurations at the bifurcation points.nb. Mathematica notebook available from http://web.nchu.edu.tw/ yltsai/ · Zbl 1416.70011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.