×

Exponential stability of stochastic genetic regulatory networks with interval uncertainties and multiple delays. (English) Zbl 1390.92052

Summary: In this paper, the delay-dependent exponential stability analysis problem for a class of genetic regulatory networks (GRNs) with multiple time-varying delays and interval parameter uncertainties is studied. By employing a new Lyapunov-Krasovskii functional and employing some free-weighting matrices, we derive sufficient delay-dependent conditions ensuring the exponential stability of interval GRNs with multiple time-varying delays and stochastic perturbations in the form of linear matrix inequalities. Finally, three numerical examples are used to demonstrate and verify the advantages of the main results.

MSC:

92C40 Biochemistry, molecular biology
92C42 Systems biology, networks
Full Text: DOI

References:

[1] Becskei A., Serrano L.: Engineering stability in gene networks by autoregulation. Nature 405, 590-593 (2000) · doi:10.1038/35014651
[2] Zhang W., Tang Y., Fang J., Wu X.: Stochastic stability of genetic regulatory networks with a finite set delay characterization. Chaos 22, 023106 (2012) · Zbl 1331.93218 · doi:10.1063/1.3701994
[3] Zhang W., Fang J., Tang Y.: Robust stability for genetic regulatory networks with linear fractional uncertainties. Commun. Nonlinear Sci. Numer Simul. 17, 1753-1765 (2012) · Zbl 1239.92041 · doi:10.1016/j.cnsns.2011.09.026
[4] Elowitz M.B., Leibler S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335-338 (2000) · doi:10.1038/35002125
[5] Gardner T.S., Cantor C.R., Collins J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339-342 (2000) · doi:10.1038/35002131
[6] Zhang W., Fang J., Tang Y.: Stochastic stability of Markovian jumping genetic regulatory networks with mixed time delays. Appl. Math. Computat. 217, 7210-7225 (2011) · Zbl 1216.34080 · doi:10.1016/j.amc.2011.02.010
[7] Friedman N., Linial M., Nachman I. et al.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601-620 (2000) · doi:10.1089/106652700750050961
[8] Hartemink A.J., Gifford D.K., Jaakkola T.S. et al.: Bayesian methods for elucidating genetic regulatory networks. IEEE Intell. Syst. 17, 37-43 (2002)
[9] Huang S.: Gene expression profiling genetic regulatory networks and cellular states: an integrating concept for tumorigenesis and drug discovery. J. Mol. Med. 77, 469-480 (1999) · doi:10.1007/s001099900023
[10] Kauffman S.A.: Metabolic stability and epigenesist in randomly constructed genetic nets. J. Theor. Biol. 22, 437-467 (1969) · doi:10.1016/0022-5193(69)90015-0
[11] Chen L., Aihara K.: Stability of genetic regulatory networks with time delay. IEEE Trans. CAS-I 49, 602-608 (2002) · Zbl 1368.92117 · doi:10.1109/TCSI.2002.1001949
[12] Zhang W., Fang J., Tang Y.: New robust stability analysis for genetic regulatory networks with random discrete delays and distributed delays. Neurocomputing 74, 2344-2360 (2011) · doi:10.1016/j.neucom.2011.03.011
[13] Tang Y., Wang Z., Fang J.: Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm. Expert Syst. Appl. 38, 2523-2535 (2011) · doi:10.1016/j.eswa.2010.08.041
[14] Li C., Chen L., Aihara K.: Stability of genetic networks with sum regulatory logic:Lur’s system and LMI approach. IEEE Trans. Circuits Syst. I 53, 2451-2458 (2006) · Zbl 1374.92045 · doi:10.1109/TCSI.2006.883882
[15] Cao J., Ren F.: Exponential stability of discrete-time genetic regulatory networks with delays. IEEE Trans. Neural Netw. 19, 520-523 (2008) · doi:10.1109/TNN.2007.911748
[16] He W., Cao J.: Robust stability of genetic regulatory networks with distrituted delay. Cogn. Neurodyn. 2, 355-361 (2008) · doi:10.1007/s11571-008-9062-0
[17] Ren F., Cao J.: Asymptotic and robust stability of genetic regulatory networks with time-varying delays. Neurocomputing 71, 834-842 (2008) · doi:10.1016/j.neucom.2007.03.011
[18] Wang Z., Gao H., Cao J., Liu X.: On delayed genetic regulatory networks with polytopic uncertainties: robust stability analysis. IEEE Trans. Nanbiosci. 7, 154-163 (2008) · doi:10.1109/TNB.2008.2000746
[19] Wu, F.: Stability analysis of genetic regulatory networks with multiple time delays. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS Cite Internationale, Lyon, France August 23-26 (2007)
[20] Wu F.: Delay-independent stability of genetic regulatory netowkrs with time delays. Adv. Complex Syst. 12, 3-19 (2009) · Zbl 1166.92022 · doi:10.1142/S0219525909002040
[21] Wang Y., Shen J., Niu B. et al.: Robustness of interval gene networks with multiple time-varying delays and noise. Neurocomputing 72, 3303-3310 (2009) · doi:10.1016/j.neucom.2009.02.012
[22] Pan W., Wang Z., Gao H. et al.: On multistability of delayed genetic regulatory networks with multivariable regulation functions. Math. Biosci. 228, 100-109 (2010) · Zbl 1200.92020 · doi:10.1016/j.mbs.2010.08.012
[23] Wang Z., Lam J., Wei G. et al.: Filtering for nonlinear genetic regulatory networks with stochastic disturbances. IEEE Trans. Autom. Control 53, 2448-2457 (2008) · Zbl 1367.92079 · doi:10.1109/TAC.2008.2007862
[24] Tian T., Burragea K., Burragea P.M. et al.: Stochastic delay differential equations for genetic regulatory networks. J. Comput. Appl. 205, 696-707 (2007) · Zbl 1112.92029 · doi:10.1016/j.cam.2006.02.063
[25] Wang G., Cao J.: Robust exponential stability analysis for stochastic genetic network with uncertain parameters. Commun. Nonlinear Sic. Number. Simul. 14, 3369-3378 (2009) · Zbl 1221.93217 · doi:10.1016/j.cnsns.2009.01.004
[26] Sun Y., Feng G., Cao J.: Stochastic stability of Markovian switching genetic regulatory networks. Phys. Lett. A 373, 1646-1652 (2009) · Zbl 1229.92041 · doi:10.1016/j.physleta.2009.03.017
[27] Balasubramaniam P., Rakkiyappan R., Krishnasamy R.: Stochastic stability of Markovian jumping uncertain stochastic genetic regulatory network with interval time-varying delays. Math. Biosci. 226, 97-108 (2010) · Zbl 1194.92030 · doi:10.1016/j.mbs.2010.04.002
[28] Li P., Lam J., Shu Z.: On the transient and steady-state estimates of interval genetic regulatory networks. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 40, 336-349 (2010) · doi:10.1109/TSMCB.2009.2022402
[29] Kao, Y.; Wang, C.; Zhang, L.: Delay-dependent robust exponential stability of impulsive Markovian jumping reaction-diffusion Cohen-Grossberg neural networks, Neural Process. Lett. doi:10.1007/s11063-012-9269-2
[30] Yang, G.; Kao, Y.; Wang, C.: Exponential stability and periodicity of fuzzy delayed reaction-diffusion cellular neural networks with impulsive effect. Abstr. Appl. Anal. (2013), 645262, 9 p · Zbl 1273.35302
[31] Yang, G.; Kao, Y.; Li, W.; Sun, X.: Exponential stability of impulsive stochastic fuzzy cellular neural networks with mixed delays and reactionCdiffusion terms. Neural Comput. Appl. doi:10.1007/s00521-012-1040-0 · Zbl 1216.34080
[32] Wang C., Kao Y., Yang G.: Exponential stability of impulsive stochastic fuzzy reaction-diffusion Cohen-Grossberg neural networks with mixed delays. Neurocomputing 89, 55-63 (2012) · doi:10.1016/j.neucom.2012.01.022
[33] Kao Y., Wang C.: Global stability analysis for stochastic coupled reactionCdiffusion systems on networks. Nonlinear Anal. Real World Appl. 14, 1457-1465 (2013) · Zbl 1263.93195 · doi:10.1016/j.nonrwa.2012.10.008
[34] Zhang W., Tang Y., Fang J., Wu X.: Stability of delayed neural networks with time-varying impulses. Neural Netw. 36, 59-63 (2012) · Zbl 1258.34166 · doi:10.1016/j.neunet.2012.08.014
[35] Baldi P., Atiya A.F.: How delays affect neural dynamics and learning. IEEE Trans. Neural Netw. 5, 612-621 (1994) · doi:10.1109/72.298231
[36] Gu, K.: An integral inequality in the stability problem of time-delay systems. In: 39th IEEE Conference on Dscision and Control, Sydney, Australia, pp. 2805-2810 (Dec 2000)
[37] Boyd, S.; Ghaoui, L.E.; Feron E.; et al.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994) · Zbl 0816.93004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.