×

Spline wavelets on the unit circle. (English) Zbl 0877.65006

Spline function spaces over refined partitions form an excellent setting for multiresolution analysis which in turn leads to wavelet construction. The author considers complex spline function spaces defined on the unit circle with equispaced nodes and obtains an orthonormal basis in terms of the B-splines [cf. M. Kamada, K. Toraichi and R. Mori, J. Approximation Theory 55, No. 1, 27-34 (1988; Zbl 0679.41007)]. Two scale equations for such orthonormal bases are also derived. Thus a decomposition of the space of square integrable functions over \([0,2\pi]\) into different orthogonal subspaces is obtained. The decomposition and reconstruction formulas each consist of only two terms.

MSC:

65D07 Numerical computation using splines
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
30E10 Approximation in the complex plane
41A15 Spline approximation
65T60 Numerical methods for wavelets
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

Citations:

Zbl 0679.41007
Full Text: DOI

References:

[1] H.L. Chen, Quasiinterpolant splines on the unit circle. J. Approx. Theory Vol. 38, No. 4 (1983), 312–318. · Zbl 0521.41010 · doi:10.1016/0021-9045(83)90148-X
[2] H.L. Chen, Interpolation by splines on finite and infinite planar sets. Chin. Ann. of Math. 5B(3) (1984), 375–390. · Zbl 0586.30031
[3] H.L. Chen, Tron Hvaring, Approximation of complex harmonic functions by complex harmonic splines. Math. Comp. 42 (1984), 151–164. · Zbl 0535.30012 · doi:10.1090/S0025-5718-1984-0725990-8
[4] H.L. Chen, Interpolation and approximation on the unit disc by complex harmonic splines. J. Approx. Theory Vol. 43, No. 2 (1985), 112–123. · Zbl 0583.41013 · doi:10.1016/0021-9045(85)90119-4
[5] G. Walz, Spline Funktionen im Komplexen. BI-Wiss-Verl. Mannheim; Wien; Zurich (1991).
[6] Y. Meyer, Wavelets and Operators,Cambridge Univ. Press, Cambridge 1993. · Zbl 0810.42015
[7] I. Daubechies, Ten Lectures on Wavelets, CBMS, 61, SIAM, Philadelphia, 1992. · Zbl 0776.42018
[8] V. Perrier, C. Basdevant, Periodical wavelet analysis, a tool for inhomogeneous field investigation. Theory and algorithms, Rech. Aérospat. 1989-3, 53-67.
[9] G. Plonka, M. Tasche, A unified approach to periodic wavelets, in: Wavelets: Theory, Algorithms, and Applications, C. K. Chui, L. Montefusco, and L. Puccio (eds.), (1994), 137-151. · Zbl 0874.42026
[10] Y. W. Koh, S.L. Lee, H. H. Tan, Periodic orthogonal splines and wavelets, in Appl. Comput. Harmonic Anal., 2(1995), 201–218. · Zbl 0845.42014 · doi:10.1006/acha.1995.1014
[11] S. Dahlke, Multiresolution analysis and wavelets on locally compact abelian groups. in Wavelets, Images and Surface Fitting, P.L. Laurent, A. Le Méhauté and L. L. Schumaber (eds), AK Peters 1994, 141-156. · Zbl 0834.43004
[12] M. Kamada, K. Toraichi and R. Mori, Periodic orthonormal Bases, J. Appr. Th. 55, 27–34(1988). · Zbl 0679.41007 · doi:10.1016/0021-9045(88)90108-6
[13] H.L. Chen, Construction of orthonormal wavelet basis in periodic case. to appear in Chinese Science Bulletin.
[14] H.L. Chen, Wavelets from trigonometric spline approach, to appear in Journal of Approximation Theory and its Applications.
[15] I.J. Schoenberg, On polynomial spline functions on the circle I, II. In: Proc. Conf. Constructive Theory of Functions, G. Alexits and S.B. Steckin (eds.), Budapest (1971), 403-433.
[16] C.de. Boor and G.J. Fix, spline approximation by quasiinterpolants, J. Approx. Theory 8 (1973), 19–45. · Zbl 0279.41008 · doi:10.1016/0021-9045(73)90029-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.