×

An algorithm for the inversion of Laplace transforms using Puiseux expansions. (English) Zbl 1404.65316

Summary: This paper is devoted to designing a practical algorithm to invert the Laplace transform by assuming that the transform possesses the Puiseux expansion at infinity. First, the general asymptotic expansion of the inverse function at zero is derived, which can be used to approximate the inverse function when the variable is small. Second, an inversion algorithm is formulated by splitting the Bromwich integral into two parts. One is the main weakly oscillatory part, which is evaluated by a composite Gauss-Legendre rule and its Kronrod extension, and the other is the remaining strongly oscillatory part, which is integrated analytically using the Puiseux expansion of the transform at infinity. Finally, some typical tests show that the algorithm can be used to invert a wide range of Laplace transforms automatically with high accuracy and the output error estimator matches well with the true error.

MSC:

65R10 Numerical methods for integral transforms
44A10 Laplace transform
65D30 Numerical integration
Full Text: DOI

References:

[1] Abate, J., Valkó, P.P.: Multi-precision Laplace transform inversion. Int. J. Numer. Methods Eng. 60, 979-993 (2004) · Zbl 1059.65118 · doi:10.1002/nme.995
[2] Antonelli, L., Corsaro, S., Marino, Z., Rizzardi, M.: Algorithm 944: Talbot Suite: parallel implementations of Talbot’s method for the numerical inversion of Laplace transforms. ACM Trans. Math. Soft. 40, 4 (2014). Article 29 18 pages · Zbl 1371.65133 · doi:10.1145/2616909
[3] Aroca, F., Ilardi, G., Lopez de Medrano, L.: Puiseux power series solutions for systems of equations. Int. J. Math. 21, 1439-1459 (2010) · Zbl 1247.14066 · doi:10.1142/S0129167X10006574
[4] Calvetti, D., Golub, G.H., Gragg, W.B., Reichel, L.: Computation of Gauss-Kronrod quadrature rules. Math. Comp. 69, 1035-1052 (2000) · Zbl 0947.65022 · doi:10.1090/S0025-5718-00-01174-1
[5] Coffey, M.W.: A set of identities for a class of alternating binomial sums arising in computing applications. Util. Math. 76, 79-90 (2008) · Zbl 1190.05011
[6] Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer Science+Business Media, New York (2007) · Zbl 1127.65094
[7] Connon, D.F.: Various applications of the (exponential) complete Bell polynomials. arXiv:1001.2835 (2010) · Zbl 1113.65119
[8] Cuomo, S., D´Amore, L., Murli, A., Rizzardi, M.: Computation of the inverse Laplace transform based on a collocation method which uses only real values. J. Comput. Appl. Math. 198, 98-115 (2007) · Zbl 1105.65120 · doi:10.1016/j.cam.2005.11.017
[9] D´Amore, L., Lacetti, G., Murli, A.: An implementation of a Fourier-series method for the numerical inversion of the Laplace transform. ACM Trans. Math. Soft. 25, 279-305 (1999) · Zbl 0962.65109 · doi:10.1145/326147.326148
[10] D´Amore, L., Campagna, R., Mele, V., Murli, A.: RelaTIve. An Ansi C90 software package for the real Laplace transform inversion. Numer. Algorithms 63, 187-211 (2013) · Zbl 1267.65202 · doi:10.1007/s11075-012-9636-0
[11] Davis, B., Martin, B.: Numerical inversion of the Laplace transform: a survey and comparison of methods. J. Comput. Phys. 33, 1-32 (1979) · Zbl 0416.65077 · doi:10.1016/0021-9991(79)90025-1
[12] Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, San Diego (1984) · Zbl 0537.65020
[13] Dingfelder, B., Weideman, J.A.C.: An improved Talbot method for numerical Laplace transform inversion. Numer. Algorithms 68, 167-183 (2015) · Zbl 1432.65190 · doi:10.1007/s11075-014-9895-z
[14] Dubner, R., Abate, J.: Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J. ACM 15, 115-123 (1968) · Zbl 0165.51403 · doi:10.1145/321439.321446
[15] Duffy, D.G.: On the numerical inversion of Laplace transform, comparison of three new methods on characteristic problems from applications. ACM Trans. Math. Soft. 19, 333-359 (1993) · Zbl 0892.65079 · doi:10.1145/155743.155788
[16] Duffy, D.G.: Transform Methods for Solving Partial Differential Equations, 2nd edn. Chapman and Hill, Boca Raton (2004) · Zbl 1073.35001 · doi:10.1201/9781420035148
[17] Ehrich, S.: High order error constants of Gauss-Kronrod quadrature formulas. Analysis 16, 335-345 (1996) · Zbl 0859.41022 · doi:10.1524/anly.1996.16.4.335
[18] Ehrich, S.; Gautschi, W. (ed.); Golub, G. H (ed.); Opfer, G. (ed.), Stieltjes Polynomials and the Error of Gauss-Kronrod Quadrature Formulas (1999), Basel
[19] Garbow, B.S., Giunta, G., Lyness, J.N., Murli, A.: Software for an implementation of Weeks’ method for the inverse Laplace transform problem. ACM Trans. Math. Soft. 14, 163-170 (1988) · Zbl 0642.65086 · doi:10.1145/45054.45057
[20] Gaver, J.D.P.: Observing stochastic processes and approximate transform inversion. Oper. Res. 14, 444-459 (1966) · doi:10.1287/opre.14.3.444
[21] Gonnet, P.: A review of error estimation in adaptive quadrature. ACM Comput. Surv. 44, 4 (2012). Article 22 36 pages · Zbl 1293.65037 · doi:10.1145/2333112.2333117
[22] Gzyl, H., Tagliani, A., Milev, M.: Laplace transform inversion on the real line is truly ill-conditioned. Appl. Math. Comput. 219, 9805-9809 (2013) · Zbl 1292.44001
[23] Handelsman, R.A., Olmstead, W.E.: Asymptotic solution to a class of nonlinear Volterra integral equations. SIAM J. Appl. Math. 22, 373-384 (1972) · Zbl 0237.45019 · doi:10.1137/0122035
[24] Hassanzadeh, H., Pooladi-Darvish, M.: Comparison of different numerical Laplace inversion methods for engineering applications. Appl. Math. Comput. 189, 1966-1981 (2007) · Zbl 1243.65151
[25] Iqbal, M.: On a numerical technique regarding inversion of the Laplace transform. J. Comput. Appl. Math. 59, 145-154 (1995) · Zbl 0834.65127 · doi:10.1016/0377-0427(94)00028-Y
[26] Kuhlman, K.L.: Review of inverse Laplace transform algorithms for Laplace-space numerical approaches. Numer. Algorithms 63, 339-355 (2013) · Zbl 1269.65134 · doi:10.1007/s11075-012-9625-3
[27] Laurie, D.P.: Calculation of Gauss-Kronrod quadrature rules. Math. Comput. 66, 1133-1145 (1997) · Zbl 0870.65018 · doi:10.1090/S0025-5718-97-00861-2
[28] Lee, J., Sheen, D.: An accurate numerical inversion of Laplace transforms based on the location of their poles. Comput. Math. Appl. 48, 1415-1423 (2004) · Zbl 1069.65143 · doi:10.1016/j.camwa.2004.08.003
[29] Levin, D.: Numerical inversion of the Laplace transform by accelerating the convergence of Bromwich’s integral. J. Comput. Appl. Math. 1, 247-250 (1975) · Zbl 0315.65075 · doi:10.1016/0771-050X(75)90015-7
[30] Lin, F.R., Liang, F.: Application of high order numerical quadratures to numerical inversion of the Laplace transform. Adv. Comput. Math. 36, 267-278 (2012) · Zbl 1254.65128 · doi:10.1007/s10444-011-9202-7
[31] Liu, Z.F., Wang, T.K., Gao, G.H.: A local fractional Taylor expansion and its computation for insufficiently smooth functions. E. Asian J. Appl. Math. 5, 176-191 (2015) · Zbl 1490.65002 · doi:10.4208/eajam.060914.260415a
[32] Lyness, J.N., Giunta, G.: A modification of the Weeks method for the numerical inversion of the Laplace transform. Math. Comp. 47, 313-322 (1986) · Zbl 0611.65088 · doi:10.1090/S0025-5718-1986-0842138-1
[33] Massouros, P.G., Genin, G.M.: Algebraic inversion of the Laplace transform. Comput. Math. Appl. 50, 179-185 (2005) · Zbl 1084.65129 · doi:10.1016/j.camwa.2004.11.017
[34] Milovanović, G.V., Cvetković, A.S.: Numerical inversion of the Laplace transform. Facta Universitatis-series: Electronics and Energetics 20, 295-310 (2005) · Zbl 1249.65279
[35] Monegato, G.: An overview of the computational aspects of Kronrod quadrature rules. Numer. Algorithms 26, 173-196 (2001) · Zbl 0974.65024 · doi:10.1023/A:1016640617732
[36] Murli, A., Rizzardi, M.: Algorithm 682: Talbot’s method for the Laplace inversion problem. ACM Trans. Math. Soft. 16, 158-168 (1990) · Zbl 0900.65374 · doi:10.1145/78928.78932
[37] Naeeni, M.R., Campagna, R., Eskandari-Ghadi, M., Ardalan, A.A.: Performance comparison of numerical inversion methods for Laplace and Hankel integral transforms in engineering problems. Appl. Math. Comput. 250, 759-775 (2015) · Zbl 1328.65069
[38] Oberhettinger, F., Badii, L.: Tables of Laplace Transforms. Springer-Verlag, Berlin (1973) · Zbl 0285.65079 · doi:10.1007/978-3-642-65645-3
[39] Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974) · Zbl 0303.41035
[40] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010). http://dlmf.nist.gov · Zbl 1198.00002
[41] Petras, K.: On the computation of the Gauss-Legendre quadrature formula with a given precision. J. Comput. Appl. Math. 112, 253-267 (1999) · Zbl 0951.65026 · doi:10.1016/S0377-0427(99)00225-3
[42] Piessens, R.: Gaussian quadrature formulas for the numerical integration of Bromwich’s integral and the inversion of the Laplace transform. J. Eng. Math. 5, 1-9 (1971) · Zbl 0263.65032 · doi:10.1007/BF01535429
[43] Poteaux, A., Rybowicz, M.: Good reduction of Puiseux series and applications. J. Symb. Comput. 47, 32-63 (2012) · Zbl 1235.30002 · doi:10.1016/j.jsc.2011.08.008
[44] Rizzardi, M.: A modification of Talbot’s method for the simultaneous approximation of several values of the inverse Laplace transform. ACM Trans. Math. Soft. 21, 347-371 (1995) · Zbl 0887.65133 · doi:10.1145/212066.212068
[45] Schiff, J.L.: The Laplace Transform: Theory and Applications. Springer-Verlag, New York (1999) · Zbl 0934.44001 · doi:10.1007/978-0-387-22757-3
[46] Sellier, A.: Asymptotic expansions of a class of integrals. Proc. R. Soc. Lond. A Math. Phys. 445, 693-710 (1994) · Zbl 0831.41019 · doi:10.1098/rspa.1994.0087
[47] Sidi, A.: Practical Extrapolation Methods-Theory and Applications. Cambridge University Press, Cambridge (2003) · Zbl 1041.65001 · doi:10.1017/CBO9780511546815
[48] Swarztrauber, P.N.: On computing the points and weights for Gauss-Legendre quadrature. SIAM J. Sci. Comput. 24, 945-954 (2002) · Zbl 1036.65030 · doi:10.1137/S1064827500379690
[49] Talbot, A.: The accurate numerical inversion of Laplace transforms. IMA J. Appl. Math. 23, 97-120 (1979) · Zbl 0406.65054 · doi:10.1093/imamat/23.1.97
[50] Valkó, P.P., Abate, J.: Comparison of sequence accelerators for the Gaver method of numerical Laplace transform inversion. Comput. Math. Appl. 48, 629-636 (2004) · Zbl 1064.65152 · doi:10.1016/j.camwa.2002.10.017
[51] Wang, T.K., Li, N., Gao, G.H.: The asymptotic expansion and extrapolation of trapezoidal rule for integrals with fractional order singularities. Int. J. Comput. Math. 92, 579-590 (2015) · Zbl 1317.65066 · doi:10.1080/00207160.2014.902447
[52] Wang, T.K., Liu, Z.F., Zhang, Z.Y.: The modified composite Gauss-type rules for singular integrals using Puiseux expansions. Math. Comp. 86, 345-373 (2017) · Zbl 1351.65018 · doi:10.1090/mcom/3105
[53] Wang, T.K., Zhang, Z.Y., Liu, Z.F.: The practical Gauss type rules for Hadamard finite-part integrals using Puiseux expansions. Adv. Comput. Math. 43, 319-350 (2017) · Zbl 1373.65017 · doi:10.1007/s10444-016-9487-7
[54] Weeks, W.T.: Numerical inversion of the Laplace transform using Laguerre functions. J. ACM 13, 419-429 (1966) · Zbl 0141.33401 · doi:10.1145/321341.321351
[55] Weideman, J.A.C.: Algorithms for parameter selection in the Weeks method for inverting the Laplace transform. SIAM J. Sci. Comput. 21, 111-128 (1999) · Zbl 0944.65137 · doi:10.1137/S1064827596312432
[56] Weideman, J.A.C.: Optimizing Talbot’s contours for the inversion of the Laplace transform. SIAM J. Numer. Anal. 44, 2342-2362 (2006) · Zbl 1131.65105 · doi:10.1137/050625837
[57] Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comp. 76, 1341-1356 (2007) · Zbl 1113.65119 · doi:10.1090/S0025-5718-07-01945-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.