×

An efficient alternating direction method of multipliers for optimal control problems constrained by random Helmholtz equations. (English) Zbl 1388.93110

Summary: Based on the alternating direction method of multipliers (ADMM), we develop three numerical algorithms incrementally for solving the optimal control problems constrained by random Helmholtz equations. First, we apply the standard Monte Carlo technique and finite element method for the random and spatial discretization, respectively, and then ADMM is used to solve the resulting system. Next, combining the multi-modes expansion, Monte Carlo technique, finite element method, and ADMM, we propose the second algorithm. In the third algorithm, we preprocess certain quantities before the ADMM iteration, so that nearly no random variable is in the inner iteration. This algorithm is the most efficient one and is easy to implement. The error estimates of these three algorithms are established. The numerical experiments verify the efficiency of our algorithms.

MSC:

93E25 Computational methods in stochastic control (MSC2010)
90C15 Stochastic programming
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65K10 Numerical optimization and variational techniques
65C05 Monte Carlo methods
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317-355 (2010) · Zbl 1226.65004 · doi:10.1137/100786356
[2] Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDE’s with stochastic coefficients. Numer. Math. 1, 123-161 (2011) · Zbl 1230.65006 · doi:10.1007/s00211-011-0377-0
[3] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1-122 (2011) · Zbl 1229.90122 · doi:10.1561/2200000016
[4] Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta. Numer. 7, 1-49 (1998) · Zbl 0949.65003 · doi:10.1017/S0962492900002804
[5] Cai, X., Chen, Y., Han, D.: Nonnegative tensor factorizations using an alternating direction method. Front. Math. China 8, 3-18 (2013) · Zbl 1263.15026 · doi:10.1007/s11464-012-0264-8
[6] Cai, X.J., Gu, G.Y., He, B.S.: On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339-363 (2014) · Zbl 1304.90203 · doi:10.1007/s10589-013-9599-7
[7] Cai, X.J., Han, D.R.: O(1/t) Complexity analysis of the alternating direction method of multipliers. Revision under review (2014) · Zbl 1431.65083
[8] Cao, Y., Hussaini, M.Y., Zang, T.A.: An efficient monte carlo method for optimal control problems with uncertainty. Comput. Optim. Appl. 26, 219-230 (2003) · Zbl 1077.49026 · doi:10.1023/A:1026079021836
[9] Chen, C., Hong, J., Ji, L., Kong, L.: A compact scheme for coupled stochastic nonlinear Schrodinger equations. Commun. Comput. Phys. 21, 93-125 (2017) · Zbl 1373.60108 · doi:10.4208/cicp.300815.180416a
[10] Chen, P., Quarteroni, A., Rozza, G.: Stochastic optimal Robin boundary control problems of advection-dominated elliptic equations. SIAM J. Numer. Anal. 51, 2700-2722 (2013) · Zbl 1281.49015 · doi:10.1137/120884158
[11] Chen, P., Quarteroni, A.: Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraints. SIAM/ASA. J. Uncert. Quantif. 2, 364-396 (2014) · Zbl 1309.35182 · doi:10.1137/130940517
[12] Chen, P., Quarteroni, A., Rozza, G.: Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations. Numer. Math. 133, 67-102 (2015) · Zbl 1344.93109 · doi:10.1007/s00211-015-0743-4
[13] Cutland, N.J., Grzesiak, K.: Optimal control for two-dimensional stochastic Navier-Stokes equations. Appl. Math. Optim. 55, 61-91 (2007) · Zbl 1109.60046 · doi:10.1007/s00245-006-0866-1
[14] De los Reyes, J.C.: Numerical PDE-constrained Optimization. Springer (2015) · Zbl 1312.65100
[15] Debussche, A., Fuhrman, M., Tessitore, G.: Optimal control of a stochastic heat equation with boundary-noise and boundary control. ESAIM Control Optim. Calc. Var. 13, 178-205 (2007) · Zbl 1123.60052 · doi:10.1051/cocv:2007001
[16] Eckstein, J., Fukushima, M.: Some reformulations and applications of the alternating direction method of multipliers. Springer-Verlag, US (1994) · Zbl 0816.90109
[17] Feng, X.B., Lin, J.S., Lorton, C.: An efficient numerical method for acoustic wave scattering in random media. SIAM/ASA J. Uncert. Quantif. 3, 790-822 (2015) · Zbl 1327.65213 · doi:10.1137/140958232
[18] Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par penalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. ESAIM Math. Model. Num. 2, 41-76 (1975) · Zbl 0368.65053
[19] Gunzburger, M.D., Lee, H.C., Lee, J.: Error estimates of stochastic optimal neumann boundary control problems. SIAM J. Numer. Anal. 49, 1532-1552 (2011) · Zbl 1243.65008 · doi:10.1137/100801731
[20] He, B.S.: Contraction methods for convex optimization and monotone variational inequalities (2014) · Zbl 1374.65008
[21] He, B.S., Yuan, X.M.: On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700-709 (2012) · Zbl 1245.90084 · doi:10.1137/110836936
[22] He, B.S., Yuan, X.M.: On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers. Numer. Math. 130, 567-577 (2015) · Zbl 1320.90060 · doi:10.1007/s00211-014-0673-6
[23] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer Verlag (2010) · Zbl 1167.49001
[24] Ito, K., Kunisch, K.: Lagrange multiplier approach to variational problems and applications. SIAM, Philadelphia (2008) · Zbl 1156.49002 · doi:10.1137/1.9780898718614
[25] Kelley, C.T., Sachs, E.W.: Quasi-newton methods and unconstrained optimal control problems. SIAM J. Control. Optim. 25, 1503-1517 (1987) · Zbl 0634.49014 · doi:10.1137/0325083
[26] Kouri, D.P., Heinkenschloos, D., Ridzal, M., Van Bloemen Waanders, B.G.: A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM J. Sci. Comput. 35, 1847-1879 (2012) · Zbl 1275.49047 · doi:10.1137/120892362
[27] Kunisch, K., Wachsmuth, D.: Sufficient optimality conditions and semi-smooth newton methods for optimal control of stationary variational inequalities. ESAIM Contr. Optim. CA. 180, 520-547 (2012) · Zbl 1246.49021 · doi:10.1051/cocv/2011105
[28] Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial diffirential equations with random coefficients. SIAM J. Numer. Anal. 50, 3351-3374 (2012) · Zbl 1271.65017 · doi:10.1137/110845537
[29] Meyer, C., Yousept, I.: State-constrained optimal control of semilinear elliptic equations with nonlocal radiation interface conditions. SIAM J. Control Optim. 48, 734-755 (2009) · Zbl 1194.49026 · doi:10.1137/070694788
[30] Narayan, A., Zhou, T.: Stochastic collocation methods on unstructured meshes. Commun. Comput. Phys. 18, 1-36 (2015) · Zbl 1388.65127 · doi:10.4208/cicp.020215.070515a
[31] Naseri, R., Malek, A.: Numerical optimal control for problems with random forced SPDE constraints. Isrn Appl. Math. 2014, 1-11 (2014) · Zbl 1298.65153 · doi:10.1155/2014/974305
[32] Ng, M.K., Weiss, P.A., Yuan, X.M.: Solving constrained total-variation image reconstruction problems via alternating direction methods. SIAM J. Sci. Comput. 32, 2710-2736 (2010) · Zbl 1217.65071 · doi:10.1137/090774823
[33] Rosseel, E., Wells, G.N.: Optimal control with stochastic PDE constraints and uncertain controls. Comput. Method Appl. M. 213, 286-295 (2011) · Zbl 1243.49034
[34] Sun, W.: Optimal control of impressed cathodic protection systems in ship building. Appl. Math. Model. 20, 823-828 (1996) · Zbl 0878.65057 · doi:10.1016/S0307-904X(96)00088-1
[35] Tang, T., Zhao, W., Zhou, T.: Deferred correction methods for forward backward stochastic differential equations. Numer. Math. Theory Methods Appl. 10, 222-242 (2017) · Zbl 1389.60083 · doi:10.4208/nmtma.2017.s02
[36] Tiesler, H., Kirby, R.M., Xiu, D., Preusser, T.: Stochastic collocation for optimal control problems with stochastic PDE constraints. SIAM. J. Control Optim. 50, 2659-2682 (2012) · Zbl 1260.60125 · doi:10.1137/110835438
[37] Wahlberg, B., Boyd, S., Annergren, M., Wang, Y.: An ADMM algorithm for a class of total variation regularized estimation problems. IFAC Proc. Vol. 45, 83-88 (2012) · doi:10.3182/20120711-3-BE-2027.00310
[38] Xiu, D., Karniadakis, G.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137-167 (2003) · Zbl 1047.76111 · doi:10.1016/S0021-9991(03)00092-5
[39] Yang, J., Zhang, Y.: Alternating direction algorithms for l1-problems in compressive sensing. SIAM J. Sci. Comput. 33, 250-278 (2011) · Zbl 1256.65060 · doi:10.1137/090777761
[40] Zamani, N.G., Chuang, J.M.: Optimal control of current in a cathodic protection system: a numerical investigation. Optim. Contr. Appl. Met. 8, 339-350 (1987) · Zbl 0627.49019 · doi:10.1002/oca.4660080404
[41] Zhang, K., Li, J.S., Song, Y.C., Wang, X.S.: An alternating direction method of multipliers for elliptic equation constrained optimization problem. Sci. China Math. 60, 361-378 (2016) · Zbl 1365.90246 · doi:10.1007/s11425-015-0522-3
[42] Zhang, Z., Hu, X., Hou, Y., Lin, G., Yan, M.: An adaptive ANOVA-based data-driven stochastic method for elliptic PDEs with random coefficient. Commun. Comput. Phys. 16, 571-598 (2014) · Zbl 1388.65178 · doi:10.4208/cicp.270913.020414a
[43] Zhao, W., Zhang, W., Ju, L.: A multistep scheme for decoupled forward-backward stochastic differential equations. Numer. Math. Theory Methods Appl. 9, 262-288 (2016) · Zbl 1374.65008 · doi:10.4208/nmtma.2016.m1421
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.