×

A partitioned finite element scheme based on Gauge-Uzawa method for time-dependent MHD equations. (English) Zbl 1388.76160

Summary: In this paper, we mainly introduce a partitioned scheme based on Gauge-Uzawa finite element method for the 2D time-dependent incompressible magnetohydrodynamics (MHD) equations. It is a fully decoupled projection method which combines the Gauge and Uzawa methods within a variational formulation. Firstly, the temporal discretization is based on backward Euler technique for the linear term and semi-implicit scheme for the nonlinear term. Secondly, the spatial approximation of fluid velocity, hydrodynamic pressure, and magnetic field apply the mixed element method. Finally, the validity, reliability, and accuracy of the proposed algorithms are supported by numerical experiments.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Moreau, R.: Magnetohydrodynamics. Kluwer, Dordrecht (1990) · Zbl 0714.76003 · doi:10.1007/978-94-015-7883-7
[2] Gerbeau, J., Le Bris, C., Lelivre, T.: Mathematical method for the magnetohydrodynamics of liquid metals. Oxford University Press, Oxford (2006) · Zbl 1107.76001 · doi:10.1093/acprof:oso/9780198566656.001.0001
[3] He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations. IMA J. Numer. Anal. 35, 707-801 (2015) · Zbl 1312.76061
[4] Layton, W., Tran, H., Trenchea, C.: Numerical analysis of two parititioned methods for uncoupling evolutionary MHD flows. Numer. Methods Partial Differ. Equ 30, 1083-1102 (2014) · Zbl 1364.76088 · doi:10.1002/num.21857
[5] Gerbeau, J.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83-111 (2000) · Zbl 0988.76050 · doi:10.1007/s002110000193
[6] Yuksel, G., Ingram, R.: Numerical analysis of a finite element. Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers. Int. J. Numer. Anal. Model 10, 74-98 (2013) · Zbl 1266.76066
[7] Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 635-664 (1983) · Zbl 0524.76099 · doi:10.1002/cpa.3160360506
[8] Gunzburger, M., Meir, A., Peterson, J.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comp. 56, 523-563 (1991) · Zbl 0731.76094 · doi:10.1090/S0025-5718-1991-1066834-0
[9] Shötzau, D.: Mixed finite element methods for stationary incompressible magnetohydrodynamics. Numer. Math. 96, 771-800 (2004) · Zbl 1098.76043 · doi:10.1007/s00211-003-0487-4
[10] Gunzburger, M., Trenchea, C.: Optimal control of the time-periodic MHD equations. Nonlinear Anal. 63, 1687-1699 (2005) · Zbl 1224.49053 · doi:10.1016/j.na.2005.02.041
[11] Aydin, S., Nesliturk, A., Tezer-Sezgin, M.: Two-level finite element method with a stabilizing subgrid for the incompressible MHD equations. Inter. J. Numer. Meth. Fluids 62, 188-210 (2009) · Zbl 1422.76202
[12] Zhang, G., He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations: numerical implementation. Inter. J. Numer. Method Heat Fluid Flow 25(8), 1912-1923 (2015) · Zbl 1356.76451 · doi:10.1108/HFF-08-2014-0257
[13] Zhang, G., He, Y.: Decoupled schemes for unsteady MHD equations. I. time discretization, Numer. Method Part. Diff. Equ. 33(3), 956-973 (2017) · Zbl 1397.76081 · doi:10.1002/num.22132
[14] Zhang, G., He, Y.: Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation. Comput. Math. Appl. 69, 1390-1406 (2015) · Zbl 1443.65232 · doi:10.1016/j.camwa.2015.03.019
[15] Yang, J., He, Y.: Stability and error analysis for the first-order Euler implicit/explicit scheme for the 3D MHD equations, International Journal of Computer Methods, pp. 1750077. doi:10.1142/S0219876217500773 (2017) · Zbl 1404.76167
[16] Su, H., Feng, X., Huang, P.: Iterative methods in penalty finite element discretization for the steady MHD equations. Comput. Method Appl. Mech. Eng. 304, 521-545 (2016) · Zbl 1423.76281 · doi:10.1016/j.cma.2016.02.039
[17] Su, H., Feng, X., Zhao, J.: Two-level penalty Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics equations. J. Sci. Comput. 70(3), 1144-1179 (2017) · Zbl 1397.76078 · doi:10.1007/s10915-016-0276-8
[18] Zhu, T., Su, H., Feng, X.: Some Uzawa-type finite element iterative methods for the steady incompressible magnetohydrodynamic equations. Appl. Math. Comput. 302, 34-47 (2017) · Zbl 1411.76078
[19] Wu, J., Liu, D., Feng, X., Huang, P.: An efficient two-step algorithm for the stationary incompressible magnetohydrodynamic equations. Appl. Math. Comput. 302, 21-33 (2017) · Zbl 1411.76071
[20] Chorin, A.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22, 745-762 (1968) · Zbl 0198.50103 · doi:10.1090/S0025-5718-1968-0242392-2
[21] Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II. Arch. Ration. Mech. Anal. 33, 377-385 (1969) · Zbl 0207.16904 · doi:10.1007/BF00247696
[22] Oseledets, V.: On a new form of writing out the Navier-Stokes equation. Russ. Math. Surv. 44, 210-211 (1989) · Zbl 0850.76130 · doi:10.1070/RM1989v044n03ABEH002122
[23] Liu, W.E.J.: Gauge method for viscous incompressible flows. Comm. Math. Sci. 1, 317-332 (2003) · Zbl 1160.76329 · doi:10.4310/CMS.2003.v1.n2.a9
[24] Nochetto, R., Pyo, J.: The Gauge-Uzawa finite element method. Part I: the Navier-Stokes equations. SIAM J. Numer. Anal. 43, 1043-1086 (2005) · Zbl 1094.76041 · doi:10.1137/040609756
[25] Nochetto, R., Pyo, J.: The Gauge-Uzawa finite element method. Part II: the Boussinesq equations. Math. Model Method Appl. Sci. 16, 1599-1626 (2006) · Zbl 1320.76071 · doi:10.1142/S0218202506001649
[26] Pyo, J.: Optimal error estimate for semi-discrete Gauge-Uzawa method for the Navier-Stokes equations. Bull. Korean Math. Soc. 46, 627-644 (2009) · Zbl 1320.76073 · doi:10.4134/BKMS.2009.46.4.627
[27] Pyo, J.: Error estimate for the second order semi-discrete stabilized Gauge-Uzawa method for the Navier-Stokes equations. Int. J. Numer. Anal. Model 10, 24-41 (2013)
[28] Hay, G.: Vector and tensor analysis, Dover Publications (1953) · Zbl 0052.38201
[29] Heywood, J., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353-384 (1990) · Zbl 0694.76014 · doi:10.1137/0727022
[30] Ascher, U., Ruuth, S., Wetton, B.: Implicit-explicit methods for time-dependent PDE’s. SIAM J. Numer. Anal. 32, 797-823 (1995) · Zbl 0841.65081 · doi:10.1137/0732037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.