×

Nikol’skii type inequality; Bessel weight; extremal functions; extremal constants. (English) Zbl 1424.47026

For \(\alpha>-1\) and \(1\le q<\infty\), denote by \(L_{\alpha}^q\) the space of complex valued measurable functions defined on \([0,\infty)\) for which \(\Vert f\Vert_{q,\alpha}:=\left(\int_0^{\infty}\vert f(x)\vert x^{2\alpha+1}dx\right)^{\frac1q}<\infty\). For \(\sigma>0\), denote by \(\mathcal{E}(\sigma,q,\alpha)\), the set of even entire functions of exponential type at most \(\sigma\) which belong to \(L_{\alpha}^q\). Consider also the sup norm \(\Vert f\Vert_C:=\sup\{\vert f(x)\vert ,\;x\in[0,\infty)\}\). The paper deals with the study of the optimal constants and the corresponding extremal functions which can appear in the following two inequalities:
(a)
\(\Vert f\Vert_C\le M \cdot \Vert f\Vert_{q,\alpha}\) and
(b)
\(\vert f(0)\vert \le D \cdot \Vert f\Vert_{q,\alpha}\), when \(f\in \mathcal{E}(\sigma,q,\alpha)\).
The main result says that, for \(\alpha\ge-\frac12\) and \(1\le q<\infty\), we have \(M(\alpha,q,\sigma)=D(\alpha,q,\sigma)\), where \(M(\alpha,q,\sigma)\) and \(D(\alpha,q,\sigma)\) are the optimal constants in the inequalities (a) and (b), respectively. In addition, the sets of corresponding extremal functions in (a) and (b) coincide and there is given a characterization of the extremal functions. For \(1<q<\infty\), the extremal function is unique (excepting a multiplicative factor). Moreover, the uniform norm of extremal functions for inequality (a) is attained only at the point \(x=0\).

MSC:

47A30 Norms (inequalities, more than one norm, etc.) of linear operators
41A44 Best constants in approximation theory
41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
Full Text: DOI

References:

[1] N. I. Akhiezer, On entire functions of finite degree deviating least from zero, Mat. Sbornik, 31:73 (1952), 415–438 (in Russian).
[2] N. I. Akhiezer, Lectures on Approximation Theory, Nauka (Moscow, 1965) (in Russian).
[3] V. V. Arestov, Approximation of unbounded operators by bounded operators and related extremal problems, Uspekhi Mat. Nauk, 51:6 (1996), 89–124 (in Russian); translated in Russian Math. Surveys, 51:6 (1996), 1093–1126. · doi:10.4213/rm1019
[4] V. V. Arestov, Characterization of extremal elements in certain linear problems, Ural Math. J., 3:2 (2017), 22–32. · doi:10.15826/umj.2017.2.004
[5] V. Arestov and M. Deikalova, Nikol’skii inequality betwee · Zbl 1329.41012 · doi:10.1007/s40315-015-0134-y
[6] V. Arestov and M. Deikalova, Nikol’skii inequality betwee · Zbl 1389.41013 · doi:10.1007/s10476-016-0201-2
[7] V. Arestov, M. Deikalova and A. Horváth, On Nikol’skii type inequality between the uniform norm and the integral q-norm with Laguerre weight of algebraic polynomials on the half-line, J. Approx. Theory, 222 (2017), 40–54. · Zbl 1375.41006 · doi:10.1016/j.jat.2017.05.005
[8] A. G. Babenko, Exact Jackson–Stechkin i
[9] V. F. Babenko, N. P. Korneichuk, and A. A. Ligun, Extremal Properties of Polynomials and Splines, Naukova Dumka (Kiev, 1992) (in Russian); English translation: Nova Science (New York, 1996).
[10] H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill Book Company (New York, 1953). · Zbl 0143.29202
[11] S. N. Bernstein, On the best approximation of continuous functions on the whole real axis by entire functions of given degree, III, Dokl. Akad. Nauk SSSR, 52:7 (1946), 565–568 (in Russian).
[12] S. N. Bernstein, Functions of finite degree and functions of finite semidegree, Izv. Akad. Nauk SSSR, Ser. Mat., 13 (1949), 111–124 (in Russian).
[13] S. N. Bernstein, Collected Works, Vol. 1, Izd. Akad. Nauk SSSR (Moscow, 1952) (in Russian). · Zbl 0047.07301
[14] B. Bojanov, Polynomial inequalities, in: Proc. Int. Conf. ”Open Problems in Approximation Theory” (Voneshta voda, Bulgaria, June 18–24, 1993), Science Culture Technology Publishing (Singapore, 1994), pp. 25–42.
[15] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer (New York, 1995). · Zbl 0840.26002
[16] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer (Berlin, 1993). · Zbl 0797.41016
[17] N. Dunford and J. Schwartz, Linear Operators: General Theory, Interscience (New York, 1958); Russian translation: Inostrannaya Lit. (Moscow, 1962).
[18] M. I. Ganzburg, Sharp constants in V.A. Markov–Bernstein type inequalities of different metrics, J. Approx. Theory, 215 (2017), 92–105. · Zbl 1358.41008 · doi:10.1016/j.jat.2016.11.007
[19] M. I. Ganzburg and S. Yu. Tikhonov, On sharp constants in Bernstein–Nikol’skii inequalities, Constr. Approx., 45 (2017), 449–466. · Zbl 1370.41023 · doi:10.1007/s00365-016-9363-1
[20] A. V. Gladkaya and O. L. Vinogradov, Entire functions that deviate least from zero in the uniform and the integral metrics with a weight, Algebra i Analiz, 26:2 (2014), 10–28 (in Russian); translated in St. Petersburg Math. J., 26 (2015), 867–879. · Zbl 1332.30058
[21] D. V. Gorbachev, Selected Problems in Functional Analysis and Approximation Theory and Their Applications, 2nd ed., Grif i K (Tula, 2005) (in Russian).
[22] A. Gray and G. B. Mathews, A Treatise on Bessel Fuctions and their Applications to Physics, Macmillan and Co. (London, 1895). · Zbl 0135.28002
[23] N. P. Korneichuk, Extremal Problems of Approximation Theory, Nauka (Moscow, 1976) (in Russian).
[24] B. M. Levitan, Expansion in Fourier series and integrals with Bessel functions, Uspekhi Mat. Nauk, 6:2 (1951), 102–143 (in Russian). · Zbl 0043.07002
[25] A. I. Markushevich, Theory of Analytic Functions, Nauka (Moscow, 1968) (in Russian).
[26] G. V. Milovanović, D. S. Mitrinovic and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific (Singapore, 1994).
[27] R. J. Nessel and G. Wilmes, Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type, J. Austral. Math. Soc., Ser. A, 25 (1978), 7–18. · Zbl 0376.42001 · doi:10.1017/S1446788700038878
[28] R. J. Nessel and G. Wilmes, Nikol’skii-type inequalities in connection with regular spectral measures, Acta Math. Acad. Sci. Hungar., 33 (1979), 169–182. · Zbl 0398.42019 · doi:10.1007/BF01903392
[29] R. J. Nessel and G. Wilmes, Über Ungleichungen vom Bernstein–Nikol’skii–Riesz- Typ in Banach Räumen, Forschungsberichte des Landes Nordrhein-Westfalen, 2841, Westdeutscher Verlag (Opladen, 1979). · Zbl 0452.42001
[30] S. M. Nikol’skii, Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables, Trudy Mat. Inst. Steklov, 38 (1951), 244–278 (in Russian).
[31] S. M. Nikol’skii, Approximation of Functions of Several Variables and Imbedding Theorems, Nauka (Moscow, 1969) (in Russian); English translation: Springer (New York, 1975).
[32] S. S. Platonov, Analogs of Bernstein and Nikol’skii inequalities for one class of exponential-type entire functions Dokl. Akad. Nauk, 398:2 (2004), 168–171 (in Russian); translated in Dokl. Math., 70:2 (2004), 711–713.
[33] S. S. Platonov, Bessel harmonic analysis and approximation of functions on the halfline, Izv. RAN, Ser. Mat., 71 (2007), 149–196 (in Russian); translated in Izv. Math., 71 (2007), 1001–1048. · doi:10.4213/im720
[34] G. Pólya and G. Szego, Problems and Theorems in Analysis, Vol. 2, Springer (Berlin, 1972); Russian translation: Nauka (Moscow, 1978).
[35] Q. I. Rahman and G. Schmeisser, Lp inequalities for entire functions of exponential type, Trans. Amer. Math. Soc., 320 (1990), 91–103. · Zbl 0699.30022
[36] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford Univ. Press (Oxford, 2002). · Zbl 1072.30006
[37] G. E. Shilov, Mathematical Analysis: The Second Special Course, Nauka (Moscow, 1965) (in Russian).
[38] G. Szego and A. Zygmund, On certain mean values of polynomials, J. Anal. Math., 3 (1953), 225–244. · Zbl 0055.30303 · doi:10.1007/BF02803592
[39] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Fizmatgiz (Moscow, 1960) (in Russian); English translation: Pergamon (New York, 1963).
[40] V. S. Vladimirov, Generalized Functions in Mathematical Physics, Mir (Moscow, 1979) (in Russian).
[41] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press (Cambridge, 1995); Russian translation: Inostr. Lit. (Moscow, 1949).
[42] A. Zygmund, Trigonometric Series, Vols. 1, 2, Cambridge Univ. Press (New York, 1959); Russian translation: Mir (Moscow, 1965). · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.