×

Scaling limits for sub-ballistic biased random walks in random conductances. (English) Zbl 1430.60089

Summary: We consider biased random walks in positive random conductances on the \(d\)-dimensional lattice in the zero-speed regime and study their scaling limits. We obtain a functional law of large numbers for the position of the walker, properly rescaled. Moreover, we state a functional central limit theorem where an atypical process, related to the fractional kinetics, appears in the limit.

MSC:

60K37 Processes in random environments
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)

References:

[1] Aidékon, E. (2008). Transient random walks in random environment on a Galton-Watson tree. Probab. Theory Related Fields 142 525-559. · Zbl 1146.60078
[2] Andres, S., Barlow, M. T., Deuschel, J.-D. and Hambly, B. M. (2013). Invariance principle for the random conductance model. Probab. Theory Related Fields 156 535-580. · Zbl 1356.60174
[3] Barlow, M. T. and Černý, J. (2011). Convergence to fractional kinetics for random walks associated with unbounded conductances. Probab. Theory Related Fields 149 639-673. · Zbl 1227.60112
[4] Ben Arous, G. and Černý, J. (2006). Dynamics of trap models. In Mathematical Statistical Physics 331-394. Elsevier, Amsterdam. · Zbl 1458.82019
[5] Ben Arous, G. and Černý, J. (2007). Scaling limit for trap models on \(\mathbb{Z}^d \). Ann. Probab.35 2356-2384. · Zbl 1134.60064
[6] Ben Arous, G., Bovier, A. and Černý, J. (2008). Universality of the REM for dynamics of mean-field spin glasses. Comm. Math. Phys.282 663-695. · Zbl 1208.82024
[7] Ben Arous, G., Bovier, A. and Gayrard, V. (2003). Glauber dynamics of the random energy model. II. Aging below the critical temperature. Comm. Math. Phys.236 1-54. · Zbl 1037.82039
[8] Ben Arous, G. and Fribergh, A. (2016). Biased random walks on random graphs. In Probability and Statistical Physics in St. Petersburg. Proc. Sympos. Pure Math.91 99-153. Amer. Math. Soc., Providence, RI. · Zbl 1388.60170
[9] Ben Arous, G., Fribergh, A., Gantert, N. and Hammond, A. (2012). Biased random walks on Galton-Watson trees with leaves. Ann. Probab.40 280-338. · Zbl 1239.60091
[10] Ben Arous, G. and Hammond, A. (2012). Randomly biased walks on subcritical trees. Comm. Pure Appl. Math.65 1481-1527. · Zbl 1254.60094
[11] Berger, N. and Biskup, M. (2007). Quenched invariance principle for simple random walks on percolation clusters. Probab. Theory Related Fields 130 83-120. · Zbl 1107.60066
[12] Berger, N., Gantert, N. and Peres, Y. (2003). The speed of biased random walk on percolation clusters. Probab. Theory Related Fields 126 221-242. · Zbl 1029.60087
[13] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge.
[14] Biskup, M. and Prescott, T. M. (2007). Functional CLT for random walk among bounded random conductances. Electron. J. Probab.12 1323-1348. · Zbl 1127.60093
[15] Bouchaud, J. P. (1992). Weak ergodicity breaking and aging in disordered systems. J. Phys. I (France) 2 1705-1713.
[16] Cline, D. B. H. and Samorodnitsky, G. (1994). Subexponentiality of the product of independent random variables. Stochastic Process. Appl.49 75-98. · Zbl 0799.60015
[17] De Masi, A., Ferrari, P. A., Goldstein, S. and Wick, W. D. (1989). An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys.55 787-855. · Zbl 0713.60041
[18] Doyle, P. G. and Snell, J. L. (1984). Random Walks and Electric Networks. Carus Mathematical Monographs 22. Mathematical Association of America, Washington, DC. · Zbl 0583.60065
[19] Durrett, R. (1996). Probability: Theory and Examples, 2nd ed. Duxbury Press, Belmont, CA. · Zbl 1202.60001
[20] Enriquez, N., Sabot, C. and Zindy, O. (2007). A probabilistic representation of constants in Kesten’s renewal theorem. Probab. Theory Related Fields 144 581-613. · Zbl 1168.60034
[21] Enriquez, N., Sabot, C. and Zindy, O. (2007). Limit laws for transient random walks in random environment on \(\mathbb{Z} \). Ann. Inst. Fourier (Grenoble) 59 2469-2508. · Zbl 1200.60093
[22] Enriquez, N., Sabot, C. and Zindy, O. (2009). Aging and quenched localization for one- dimensional random walks in random environment in the sub-ballistic regime. Bull. Soc. Math. France 137 537-565. · Zbl 1186.60108
[23] Fontes, L. R. G., Isopi, M. and Newman, C. M. (2002). Random walks with strongly inhomogeneous rates and singular diffusions: Convergence, localization and aging in one dimension. Ann. Probab.30 579-604. · Zbl 1015.60099
[24] Fribergh, A. (2013). Biased random walk in positive random conductances on \(\mathbb{Z}^d \). Ann. Probab.41 3910-3972. · Zbl 1291.60209
[25] Fribergh, A. and Hammond, A. (2014). Phase transition for the speed of the biased random walk on the supercritical percolation cluster. Comm. Pure Appl. Math.67 173-245. · Zbl 1290.60104
[26] Gantert, N., Mathieu, P. and Piatnitski, A. (2012). Einstein relation for reversible diffusions in a random environment. Comm. Pure Appl. Math.65 187-228. · Zbl 1264.60062
[27] Hammond, A. (2013). Stable limit laws for randomly biased walks on supercritical trees. Ann. Probab.41 1694-1766. · Zbl 1304.60110
[28] Kesten, K., Kozlov, M. V. and Spitzer, F. (1975). A limit law for random walk in a random environment. Compos. Math.30 145-168. · Zbl 0388.60069
[29] Kumagai, T. (2014). Random walks on disordered media and their scaling limits. In Lecture Notes from the 40th Probability Summer School Held in Saint-Flour 2010. Lecture Notes in Math. 2101 1-147. · Zbl 1360.60003
[30] Lyons, R. and Peres, Y. (2016). Probability on Trees and Networks. Cambridge Univ. Press, Cambridge. · Zbl 1376.05002
[31] Mathieu, P. (2008). Quenched invariance principles for random walks with random conductances. J. Stat. Phys.130 1025-1046. · Zbl 1214.82044 · doi:10.1007/s10955-007-9465-z
[32] Mathieu, P. and Piatnitski, A. (2007). Quenched invariance principles for random walks on percolation clusters. Proceedings A of the Royal Society.463 2287-2307. · Zbl 1131.82012
[33] Meerschaert, M. M. and Scheffler, H.-P. (2004). Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab.41 623-638. · Zbl 1065.60042
[34] Mörters, P., Ortgiese, M. and Sidorova, N. (2011). Ageing in the parabolic Anderson model. Ann. Inst. Henri Poincaré Probab. Stat.47 969-1000. · Zbl 1268.82031
[35] Mourrat, J. C. (2011). Scaling limit of the random walk among random traps on Zd. Ann. Inst. Henri Poincaré Probab. Stat.47 813-849. · Zbl 1262.60098
[36] Shen, L. (2002). Asymptotic properties of certain anisotropic walks in random media. Ann. Appl. Probab.12 477-510. · Zbl 1016.60092
[37] Sidoravicius, V. and Sznitman, A.-S. (2004). Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 219-244. · Zbl 1070.60090
[38] Sznitman, A.-S. (2003). On the anisotropic random walk on the percolation cluster. Comm. Math. Phys.240 123-148. · Zbl 1087.82011
[39] Sznitman, A.-S. (2004). Topics in random walks in random environment. In School and Conference on Probability Theory. ICTP Lect. Notes, XVII 203-266. Abdus Salam Int. Cent. Theoret. Phys., Trieste. · Zbl 1060.60102
[40] Sznitman, A.-S. (2006). Random motions in random media. In Mathematical Statistical Physics 219-242. Elsevier, Amsterdam. · Zbl 1411.60151
[41] Sznitman, A.-S. and Zerner, M. (1999). A law of large numbers for random walks in random environment. Ann. Probab.27 1851-1869. · Zbl 0965.60100
[42] Whitt, W. (2002). Stochastic-process Limits. Springer, New York. · Zbl 0993.60001
[43] Zeitouni, O. (2004). Random walks in random environment. In Lectures on Probability Theory and Statistics. Lecture Notes in Math.1837 189-312. · Zbl 1060.60103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.