×

Convergence to equilibrium in energy-reaction-diffusion systems using vector-valued functional inequalities. (English) Zbl 1390.35156

Summary: We discuss how the recently developed energy dissipation methods for reaction diffusion systems can be generalized to the non-isothermal case. For this, we use concave entropies in terms of the densities of the species and the internal energy, where the importance is that the equilibrium densities may depend on the internal energy. Using the log-Sobolev estimate and variants for lower-order entropies as well as estimates for the entropy production of the nonlinear reactions, we give two methods to estimate the relative entropy by the total entropy production, namely a somewhat restrictive convexity method, which provides explicit decay rates, and a very general, but weaker compactness method.

MSC:

35K57 Reaction-diffusion equations
35B40 Asymptotic behavior of solutions to PDEs
35Q79 PDEs in connection with classical thermodynamics and heat transfer
92E20 Classical flows, reactions, etc. in chemistry

Software:

GENERIC
Full Text: DOI

References:

[1] Albinus, G., Gajewski, H., Hünlich, R.: Thermodynamic design of energy models of semiconductor devices. Nonlinearity 15(2), 367-383 (2002) · Zbl 1001.82117 · doi:10.1088/0951-7715/15/2/307
[2] Burger, M., Di Franscesco, M., Pietschmann, J.-F., Schlake, B.: Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42(6), 2842-2871 (2010) · Zbl 1227.35155 · doi:10.1137/100783674
[3] Bothe, D., Dreyer, W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226, 1757-1805 (2015) · Zbl 1317.76082 · doi:10.1007/s00707-014-1275-1
[4] Carlen, E.A., Loss, M.: Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on \[\mathbf{S}^nSn\]. Geom. Funct. Anal. 2(1), 90-104 (1992) · Zbl 0754.47041 · doi:10.1007/BF01895706
[5] Carlen, E.A., Carrillo, J.A., Loss, M.: Hardy-Littlewood-Sobolev inequalities via fast diffusion flows. Proc. Natl. Acad. Sci. USA 107(46), 19696-701 (2010) · Zbl 1256.42028 · doi:10.1073/pnas.1008323107
[6] Desvillettes, L., Fellner, K.: Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J. Math. Anal. Appl. 319(1), 157-176 (2006) · Zbl 1096.35018 · doi:10.1016/j.jmaa.2005.07.003
[7] Desvillettes, L., Fellner, K., Tang, B.Q.: Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks. SIAM J. Math. Anal. 49(4), 2666-2709 (2017) · Zbl 1368.35036 · doi:10.1137/16M1073935
[8] Dreyer, W., Druet, P.-É., Gajewski, P., Guhlke, C.: Existence of weak solutions for improved Nernst-Planck-Poisson models of compressible reacting electrolytes. WIAS preprint 2291 (2016) · Zbl 1442.35332
[9] Feinberg, M.: Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49, 187-194 (1972/73) · Zbl 1001.82117
[10] Fellner, K., Tang, B.Q.: Explicit exponential convergence to equilibrium for nonlinear reaction-diffusion systems with detailed balance condition. Nonlinear Anal. 159(C), 145-180 (2017) · Zbl 1367.35035 · doi:10.1016/j.na.2017.02.007
[11] Fischer, J.: Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems. Arch. Ration. Mech. Anal. 218(1), 553-587 (2015) · Zbl 1323.35175 · doi:10.1007/s00205-015-0866-x
[12] Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \[L^p\] Lp Spaces. Springer, Berlin (2007) · Zbl 1153.49001
[13] Glitzky, A., Gröger, K., Hünlich, R.: Existence, uniqueness and asymptotic behaviour of solutions to equations modelling transport of dopants in semiconductors. In: Frehse, J., Gajewski, H. (eds), Special Topics in Semiconductor Analysis, pp. 49-78. Bonner Mathematische Schriften no. 258 (1994) · Zbl 0832.35071
[14] Glitzky, A., Gröger, K., Hünlich, R.: Free energy and dissipation rate for reaction diffusion processes of electrically charged species. Appl. Anal. 60(3-4), 201-217 (1996) · Zbl 0871.35017 · doi:10.1080/00036819608840428
[15] Glitzky, A., Hünlich, R.: Energetic estimates and asymptotic for electro-reaction-diffusion systems. Z. Angew. Math. Mech. 77(11), 823-832 (1997) · Zbl 0887.35024 · doi:10.1002/zamm.19970771105
[16] Gröger, K.: Asymptotic behavior of solutions to a class of diffusion-reaction equations. Math. Nachr. 112, 19-33 (1983) · Zbl 0536.35038 · doi:10.1002/mana.19831120103
[17] Gröger, K.: On the existence of steady states of certain reaction-diffusion systems. Arch. Ration. Mech. Anal. 92(4), 297-306 (1986) · Zbl 0597.35051 · doi:10.1007/BF00280435
[18] Gröger, K.: Free energy estimates and asymptotic behaviour of reaction-diffusion processes. WIAS preprint 20 (1992) · Zbl 1323.35175
[19] Haskovec, J., Hittmeir, S., Markowich, P.A., Mielke, A.: Decay to equilibrium for energy-reaction-diffusion systems. SIAM J. Math. Anal. (2017) (Accepted) WIAS preprint 2233 · Zbl 1387.35352
[20] Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1-17 (1998) · Zbl 0915.35120 · doi:10.1137/S0036141096303359
[21] Jüngel, A., Matthes, D.: An algorithmic construction of entropies in higher-order nonlinear PDEs. Nonlinearity 19(3), 633-659 (2006) · Zbl 1091.35031 · doi:10.1088/0951-7715/19/3/006
[22] Jüngel, A.: The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28, 1963-2001 (2015) · Zbl 1326.35175 · doi:10.1088/0951-7715/28/6/1963
[23] Liero, M., Mielke, A.: Gradient structures and geodesic convexity for reaction-diffusion systems. Philos. Trans. Royal Soc. A 371(2005), 20120346, 28 (2013) · Zbl 1292.35149 · doi:10.1098/rsta.2012.0346
[24] Lieb, E.H., Yngvason, J.: The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310(1), 96 (1999) · Zbl 1027.80504 · doi:10.1016/S0370-1573(98)00082-9
[25] Mielke, A.: Formulation of thermoelastic dissipative material behavior using GENERIC. Contin. Mech. Thermodyn. 23(3), 233-256 (2011a) · Zbl 1272.74137 · doi:10.1007/s00161-010-0179-0
[26] Mielke, A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24, 1329-1346 (2011b) · Zbl 1227.35161 · doi:10.1088/0951-7715/24/4/016
[27] Mielke, A.: Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions. Discr. Cont. Dyn. Syst. Ser. S 6(2), 479-499 (2013) · Zbl 1262.35127 · doi:10.3934/dcdss.2013.6.479
[28] Mielke, A.: Uniform exponential decay for reaction-diffusion systems with complex-balanced mass-action kinetics. In: Gurevich, P., (ed), Pattern of Dynamics, Springer Proceedings in Mathematics and Statistics, Springer (2017). WIAS preprint 2326 (in print) · Zbl 0536.35038
[29] Mielke, A., Haskovec, J., Markowich, P.A.: On uniform decay of the entropy for reaction-diffusion systems. J. Dyn. Differ. Equ. 27(3-4), 897-928 (2015) · Zbl 1338.35245 · doi:10.1007/s10884-014-9394-x
[30] Mittnenzweig, M.: Entropy production inequalities for heat equations. Master’s thesis, Freie Universität and WIAS Berlin (2014)
[31] Onsager, L.: Reciprocal relations in irreversible processes, I+II. Phys. Rev. 37, 405-426 (1931). (part II, 38:2265-2279) · JFM 57.1168.10 · doi:10.1103/PhysRev.37.405
[32] Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101-174 (2001) · Zbl 0984.35089 · doi:10.1081/PDE-100002243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.