×

Analog/digital PID-based sliding-mode controller design for nonlinear processes with long time delays. (English) Zbl 1383.93023

Summary: This paper presents a methodology for the design of a cascaded analog/digital Proportional-Integral-Derivative (PID)-based sliding-mode controller for continuous-time multivariable linear/nonlinear processes with long time delays. The Optimal Linear Model (OLM) for an input/output time-delay nonlinear system is utilized to design the analog controller by using the dominant pole-assignment and the Linear Quadratic Regulator (LQR) approaches. The Chebyshev quadrature digital redesign method is extended to convert the designed analog controller into the digital counterpart. Thus, the developed controllers exhibit the advantages of both the PID and sliding mode controllers regarding the tracking, robustness, and computer control of real processes affected by bounded uncertainties, unmodeled dynamics and disturbances. Furthermore, the ideal state reconstruction methods are newly developed for the input/output time-delay plants from the input-output data. Thus, the state-feedback controller can be designed for the input/output time-delay plant with in-accessible states. Two illustrative examples are given to show the proposed method.

MSC:

93B12 Variable structure systems
93C10 Nonlinear systems in control theory
49N10 Linear-quadratic optimal control problems

References:

[1] H.K. Khalil, Nonlinear Systems, Macmillam Publishing, New York, 1992. · Zbl 0969.34001
[2] S.H. Zak, Systems and Control, Oxford, Oxford University Press, 2003 (pp 120-126; 422-426).
[3] S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, John Wiley & Sons, New York, 1996. · Zbl 0883.93001
[4] B.A. Ogunnaike, W.H. Ray, Multivariable controller design for linear systems having multiple time-delays, AIChE J., 25, (1979) 1043-1057.
[5] F.G. Shinskey, Process Control Systems: Application, Design and Tuning, fourth ed., New York, McGraw-Hill, 1996.
[6] Q.G. Wang, T.H. Lee, C. Lin, Relay Feedback: Analysis, Identification and Control, Springer-Verlag, London, Berlin, Heidelberg, 2003.
[7] M. De La Sen, N. Luo, Discretization and FIR filtering of continuous linear systems with internal and external point delays, Int. J. Control, 60, (1994) 1223-1246. · Zbl 0813.93013
[8] Y.P. Chang, L.S. Shieh, C.R. Liu, P. Cofie, Digital modeling and PID controller design for MIMO analog systems with multiple delays in states, inputs and outputs, Circuits Syst. Signal Process, 28, (2009) 111-145. · Zbl 1163.93338
[9] N. Bekiaris-Liberis, M. Krstic, Robustness of nonlinear predictor feedback laws to time- and state-dependent delay perturbations, Automatica, 49, (2013) 1576-1590. · Zbl 1360.93591
[10] N. Bekiaris-Liberis, Simultaneous compensation of input and state delays for nonlinear systems, Syst. Contr. Lett., 73, (2014) 96-102. · Zbl 1297.93136
[11] D. Bresch-Pietri, M. Krstic, Delay-adaptive control for nonlinear systems, IEEE Trans. Autom. Control, 59, (2014) 1203-1218. · Zbl 1360.93342
[12] J.P. Richard, Time-delay systems: an overview of some recent advances and open problems, Automatica, 39, (2003) 1667-1694. · Zbl 1145.93302
[13] K.J. Astrom, T. Hagglund, The future of PID control, Control Eng. Pract., 9, (2001) 1163-1175.
[14] D. Chen, D.E. Seborg, Multiloop PI/PID controller design based on gershgorin bands, IEE Proc. Control Theory Appl., 149, (2002) 68-73.
[15] Y.P. Zhang, L.S. Shieh, C.R. Liu, S.M. Guo, Digital PID controller design for multivariable analogue systems with computational input-delay, IMA J. Math. Control Info., 21, (2004) 433-456. · Zbl 1077.93037
[16] W.J. Cai, W. Ni, M.J. He, C.Y. Ni, Normalized decoupling- a new approach for MIMO process control system design, Ind. Eng. Chem. Res., 47, (2008) 7347-7356.
[17] Q.G. Wang, Z. Ye, W.J. Cai, C.C. Hang, Multivariable PID control based on dominant pole placement, PID Control for Multivariable Processes Lecture Notes in Control and Information Sciences, 373, (2008) 131-166. · Zbl 1181.93004
[18] J. Garrido, F. Vazquez, F. Morilla, Multivariable PID control by decoupling, Int. J. Syst. Sci., 10, (2014) 1-19. · Zbl 1333.93133
[19] O.J. Smith, Closer control of loops with dead time, Chem. Eng. Progress, 53, (1957) 217-219.
[20] K.J. Astrom, C.C. Hang, B.C. Lin, A new Smith predictor for controlling a process with an integrator and long dead-time, IEEE Trans. Autom. Control, 39, (1994) 343-345. · Zbl 0800.93163
[21] S. Majhi, D.P. Atherton, Online tuning of controllers for an unstable FOPDT process, IEE Proc. Control Theory Appl., 147, (2000) 421-427.
[22] B. Zhang, W.D. Zhang, Two-degree-of-freedom control scheme for processes with large time delay, Asian J. Control, 8, (2006) 50-55.
[23] X. Lu, Y.S. Yang, Q.G. Wang, W.X. Zheng, A double two-degree-of-freedom control scheme for improved control of unstable delay processes, J. Process Control, 15, (2005) 605-614.
[24] C.C. Hang, Q.G. Wang, X.P. Yang, A modified Smith predictor for a process with an integrator and long dead time, Ind. Eng. Chem. Res., 42, (2003) 484-489.
[25] V.I. Utkin, Variable structure systems with sliding modes, IEEE Trans. Autom. Control, 22, (1977) 212-222. · Zbl 0382.93036
[26] C. Edwards, S. Spurgeon, Sliding Mode Control: Theory and Applications, CRT Press, Philadelphia, PA, 1998. · Zbl 0964.93019
[27] M. Singla, L.S. Shieh, G.B. Song, L.B. Xie, Y.P. Zhang, A new optimal sliding mode controller design using scalar sign function, ISA Trans., 53, (2014) 267-279.
[28] S. Kilicaslan, S.P. Banks, Existence of solutions of Riccati differential equations, J. Dynamics, Systems, Measurements, and Control, 134, (2012) 1625-1632.
[29] M.Z. Li, F.L. Wang, F.R. Gao, PID-based sliding mode controller for nonlinear processes, Ind. Eng. Chem. Res., 40, (2001) 2660-2667.
[30] N.J. Juang, Applied System Identification, Englewood Cliffs, Prentice-Hall, 1994. · Zbl 0838.93009
[31] J. Wu, L.S. Shieh, J.S.H. Tsai, Y.P. Zhang, An approximated scalar sign function approach to optimal anti-windup digital controller design for continuous-time nonlinear systems with input constraints, Int. J. Syst. Sci., 41, (2010) 657-671. · Zbl 1193.93135
[32] L.B. Xie, L.S. Shieh, C.Y. Wu, J.S.H. Tsai, J.I. Canelon, M. Singla, Digital sliding mode controller design for multiple time-delay continuous-time transfer function matrices with a long input-output delay, J. Process Control, 25, (2015) 78-93.
[33] L.S. Shieh, W.M. Wang, M.K. Appu Panicker, Design of PAM and PWM digital controllers for cascaded analog systems, ISA Trans., 37, (1998) 201-213.
[34] M.E. Polites, Ideal state reconstructor for deterministic digital control systems, Int. J. Syst. Sci., 49, (1989) 2001-2011. · Zbl 0684.93053
[35] H. Huijberts, H. Nijmeijer. Controllability and Observability of Nonlinear Systems, EOLSS publishers, Oxford, 2004.
[36] B. Vanavil, K. Krishna Chaitanya, A. Seshagiri Rao, Improved PID controller design for unstable time delay processes based on direct synthesis method and maximum sensitivity, Int. J. Syst. Sci., 46, (2015) 1349-1366. · Zbl 1312.93049
[37] Y.P. Chang, J.S.H. Tsai, L.S. Shieh, Optimal tracking design for sampled-data systems with input time-delay under states and control constraints, JSME Int. Journal Series C., 45, (2002) 226-238.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.