×

Optimal control of mathematical models for the radiotherapy of gliomas: the scalar case. (English) Zbl 1397.49064

Summary: This paper deals with the optimal control of a mathematical model of glioma progression incorporating the basic facts of the evolution of primary brain tumors. We consider a model of the simplest possible kind, based on the Fischer-Kolmogorov equations, using ideas from V. M. Pérez-García [“Mathematical models for the radiotherapy of gliomas”, Preprint]. The control is the 2\(n\)-tuple \((t_1, \dots , t_n; d_1,\dots, d_n)\), where \(d_i\) is the \(i\)-th applied radiotherapy dose and \(t_i\) is the \(i\)-th administration for \(1 \leq i \leq n\). We search for controls that maximize the survival time, that is, the time at which the tumor mass reaches a critical value \(M_{*}\), over the class of admissible radiation times and doses. We present theoretical and numerical results that justify the relevance of the model and the existence of potential medical applications.

MSC:

49S05 Variational principles of physics
49J20 Existence theories for optimal control problems involving partial differential equations
35K20 Initial-boundary value problems for second-order parabolic equations
92C50 Medical applications (general)
Full Text: DOI

References:

[1] Bekelman JE et al (2014) Uptake and costs of hypofractionated vs conventional whole breast irradiation after breast conserving surgery in the United States, 2008-2013. J Am Med Assoc 312(23):2542-2550
[2] Bellomo N, Chaplain M, De Angelis E (eds) (2008) Selected topics in cancer modeling. Genesis, evolution, immune competition, and therapy, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston, Inc., Boston · Zbl 1149.92015
[3] Belmonte-Beitia J, Calvo GF, Pérez-García VM (2014) Effective particle methods for Fisher-Kolmogorov equations: theory and applications to brain tumor dynamics. Commun Nonlinear Sci Numer Simul 19(9):3267-3283. arXiv:1401.2465 [q-bio.QM] · Zbl 1510.92090
[4] Byrd, RH; Gilbert, JC; Nocedal, J, A trust region method based on interior point techniques for nonlinear programming, Math Program, 89, 149-185, (2000) · Zbl 1033.90152 · doi:10.1007/PL00011391
[5] Byrd, RH; Hribar, ME; Nocedal, J, An interior point algorithm for large-scale nonlinear programming, SIAM J Optim, 9, 877-900, (1999) · Zbl 0957.65057 · doi:10.1137/S1052623497325107
[6] Evans LC (2010) Partial differential equations, 2nd edn, Graduate Studies in Mathematics, vol 19. American Mathematical Society, Providence · Zbl 1194.35001
[7] Fernández-Cara E, Camacho G (2011) Optimal control of some simplified models of tumour growth. Int J Control 84:540-550 · Zbl 1221.49036
[8] Fernández-Cara E, Prouvée L (2016) Optimal control of mathematical models for the radiotherapy of gliomas: a two-equation system (preprint) · Zbl 1397.49064
[9] Fletcher R (1987) Practical methods of optimization. Wiley, New York · Zbl 0905.65002
[10] Friedman A (1964) Partial differential equations of parabolic type. Prentice-Hall Inc, Englewood Cliffs · Zbl 0144.34903
[11] Galochkina T, Bratus A, Pérez-García VM (2015) Optimal radiation fractionation for low-grade gliomas: insights from a mathematical model, Math Biosci 267:1-9 · Zbl 1371.92063
[12] Ladyzhenskaya OA, Solonnikov VA, Uraltzeva NN (1968) Linear and quasilinear equations of parabolic type, Translation of Mathematical Monographs, vol 23. Providence, Rhode Island · Zbl 0174.15403
[13] Martínez-González, A; Calvo, GF; Pérez-Romansanta, LA; Pérez-García, VM, Hypoxic cell waves around necrotic cores in gliobastoma: a biomathematical model and its therapeutic implications, Bull Math Biol, 74, 2875-2896, (2012) · Zbl 1264.92028 · doi:10.1007/s11538-012-9786-1
[14] Murray JD (2007) Mathematical biology: I. An introduction. Springer, New York
[15] Nocedal J, Wright SJ (2006) Numerical optimization, Springer Series in Operations Research, 2nd edn. Springer, New York · Zbl 1104.65059
[16] Pallud J et al (2012) Quantitative morphological MRI follow-up of low-grade glioma: a plead for systematic measurement of growth rates. Neurosurgery 71(3):729-740
[17] Pardalos PM, Romeijn HE (eds) (2009) Handbook of optimization in medicine, Springer Optimization and Its Applications, vol 26. Springer, New York · Zbl 1157.90004
[18] Pardo R, Martínez-González A, Pérez-García VM (2016) Nonlinear ghost waves accelerate the progression of high-grade brain tumors. Commun Nonlinear Sci Numer Simul 39 (2016), 360-380 · Zbl 1510.92101
[19] Pérez-García VM (2016) Mathematical models for the radiotherapy of gliomas (preprint) · Zbl 1033.90152
[20] Pérez-García VM, Bogdanska M, Martínez-González A, Belmonte-Beitia J, Schucht PL, Pérez-Romansanta LA (2015) Delay effects in the response of low grade gliomas to radiotherapy: a mathematical model and its therapeutical implications. Math Med Biol 32(3):307-329 · Zbl 1325.92049
[21] Pérez-García VM et al (2011) Bright solitary waves in malignant gliomas. Phys Rev E 84:021921
[22] Pérez-García VM, Pérez-Romasata LA (2015) Extreme protraction for low grade gliomas: theoretical proof of concept of a novel therapeutical strategy. arXiv:1407.2228 [q-bio.QM] · Zbl 1400.92279
[23] Pérez-Romasanta LA et al (2013) Mathematical model predicts response to radio-therapy of grade II gliomas. Rep Pract Oncol Radiother 18:S63
[24] Pouratian N, Schiff D (2010) Management of low-grade glioma. Curr Neurol Neurosci Rep 10(3):224-231
[25] Powell MJD (1978a) A fast algorithm for nonlinearly constrained optimization calculations. In: Watson GA (ed) Numerical Analysis, Lecture Notes in Mathematics, vol 630. Springer, New York · Zbl 0374.65032
[26] Powell MJD (1978b) The convergence of variable metric methods for nonlinearly constrained optimization calculations. In: Mangasarian OL, Meyer RR, Robinson SM (eds) Nonlinear Programming, vol 3. Academic Press, USA · Zbl 0464.65042
[27] Shampine, LF; Reichelt, MW, The MATLAB ODE suite, SIAM J Sci Comput, 18, 1-22, (1997) · Zbl 0868.65040 · doi:10.1137/S1064827594276424
[28] Shampine, LF; Reichelt, MW; Kierzenka, JA, Solving index-1 DAEs in MATLAB and simulink, SIAM Rev, 41, 538-552, (1999) · Zbl 0935.65082 · doi:10.1137/S003614459933425X
[29] Skeel, RD; Berzins, M, A method for the spatial discretization of parabolic equations in one space variable, SIAM J Sci Stat Comput, 11, 1-32, (1990) · Zbl 0701.65065 · doi:10.1137/0911001
[30] Swan GW (1981) Optimization of human cancer radiotherapy, vol 42, Lecture Notes in Biomathematics. Springer, Berlin, New York · Zbl 0464.92002
[31] Unkelbach J et al (2013) Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution. Physics in Medicine and Biology. IOP Publishing, Bristol
[32] Van der Kogel A, Joiner M (2009) Basic clinical radiobiology. Oxford University Press, Oxford · Zbl 0957.65057
[33] Waltz RA et al (2006) An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Program 107(3):391-408 · Zbl 1134.90053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.