×

Spatially dependent regularization parameter selection for total generalized variation-based image denoising. (English) Zbl 1423.94009

Summary: We propose a novel image denoising model based on the total generalized variation (TGV) regularization. In the model, a spatially dependent regularization parameter is utilized to adaptively fit the local image features, resulting in further exploitation of the denoising potential of the TGV regularization. The proposed model is formulated under a joint optimization framework, by which the estimations of the restored image and the regularization parameter are achieved simultaneously. Furthermore, the model is general purpose that can handle various types of noise occurring in image processing. An alternating minimization-based numerical scheme is especially developed, which leads to an efficient algorithmic solution to the nonconvex optimization problem. Numerical experiments are reported to illustrate the effectiveness of our model in terms of both peak signal-to-noise ratio and visual perception.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
90C26 Nonconvex programming, global optimization
68U10 Computing methodologies for image processing
90C90 Applications of mathematical programming

Software:

RecPF
Full Text: DOI

References:

[1] Almansa, A; Ballester, C; Caselles, V; Haro, G, A TV based restoration model with local constraints, J Sci Comput, 34, 209-236, (2008) · Zbl 1218.94007 · doi:10.1007/s10915-007-9160-x
[2] Andreu, F; Caselles, V; Díaz, JI; Mazón, JM, Qualitative properties of the total variation flow, J Funct Anal, 188, 516-547, (2002) · Zbl 1042.35018 · doi:10.1006/jfan.2001.3829
[3] Aubert, G; Aujol, JF, A variational approach to remove multiplicative noise, SIAM J Appl Math, 68, 925-946, (2008) · Zbl 1151.68713 · doi:10.1137/060671814
[4] Bertalmio, M; Caselles, V; Rougé, B; Solé, A, TV based image restoration with local constraints, J Sci Comput, 19, 95-122, (2003) · Zbl 1034.49036 · doi:10.1023/A:1025391506181
[5] Bertsekas DP, Nedić A, Ozdaglar AE (2003) Convex analysis and optimization. Athena Scientific, Belmont · Zbl 1140.90001
[6] Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge · Zbl 1058.90049 · doi:10.1017/CBO9780511804441
[7] Bredies, K; Holler, M, Regularization of linear inverse problems with total generalized variation, J Inverse Ill-posed Probl, 22, 871-913, (2014) · Zbl 1302.65167 · doi:10.1515/jip-2013-0068
[8] Bredies, K; Kunisch, K; Pock, T, Total generalized variation, SIAM J Imaging Sci, 3, 492-526, (2010) · Zbl 1195.49025 · doi:10.1137/090769521
[9] Bredies, K; Dong, Y; Hintermüller, M, Spatially dependent regularization parameter selection in total generalized variation models for image restoration, Int J Comput Math, 90, 109-123, (2013) · Zbl 1278.68327 · doi:10.1080/00207160.2012.700400
[10] Cai, JF; Chan, RH; Shen, Z, A framelet-based image inpainting algorithm, Appl Comput Harmon Anal, 24, 131-149, (2008) · Zbl 1135.68056 · doi:10.1016/j.acha.2007.10.002
[11] Cai, JF; Osher, S; Shen, Z, Split Bregman methods and frame based image restoration, Multiscale Model Simul, 8, 337-369, (2009) · Zbl 1189.94014 · doi:10.1137/090753504
[12] Chambolle, A, An algorithm for total variation minimization and applications, J Math Imaging Vis, 20, 89-97, (2004) · Zbl 1366.94048 · doi:10.1023/B:JMIV.0000011320.81911.38
[13] Chambolle, A; Pock, T, A first-order primal-dual algorithm for convex problems with applications to imaging, J Math Imaging Vis, 40, 120-145, (2011) · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[14] Chan, T; Marquina, A; Mulet, P, High-order total variation-based image restoration, SIAM J Sci Comput, 22, 503-516, (2000) · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[15] Chen, DQ; Cheng, LZ, Spatially adapted regularization parameter selection based on the local discrepancy function for Poissonian image deblurring, Inverse Probl, 28, 1-24, (2012) · Zbl 1252.68329 · doi:10.1088/0266-5611/28/1/015004
[16] Chen, DQ; Cheng, LZ, Spatially adapted total variation model to remove multiplicative noise, IEEE Trans Image Process, 21, 1650-1662, (2012) · Zbl 1373.94071 · doi:10.1109/TIP.2011.2172801
[17] Dong, YQ; Hintermüller, M; Rincon-Camacho, MM, Automated regularization parameter selection in multi-scale total variation models for image restoration, J Math Imaging Vis, 40, 82-104, (2011) · Zbl 1255.68230 · doi:10.1007/s10851-010-0248-9
[18] Eckstein, J; Bertsekas, DP, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math Program, 55, 293-318, (1992) · Zbl 0765.90073 · doi:10.1007/BF01581204
[19] Gabay, D; Mercier, B, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations, Comp Math Appl, 2, 17-40, (1976) · Zbl 0352.65034 · doi:10.1016/0898-1221(76)90003-1
[20] Gilboa, G; Sochen, N; Zeevi, YY, Variational denoising of partly textured images by spatially varying constraints, IEEE Trans Image Process, 15, 2281-2289, (2006) · doi:10.1109/TIP.2006.875247
[21] Glowinski, R; Marrocco, A, Sur lapproximation par elements finis dordre un, et la resolution par penalisation-dualite dune classe de problemes de Dirichlet onlineaires, Rev Francaise dAut Inf Rech Oper, 9, 41-76, (1975) · Zbl 0368.65053
[22] Guo, W; Qin, J; Yin, W, A new detail-preserving regularization scheme, SIAM J Imag Sci, 7, 1309-1334, (2014) · Zbl 1299.65130 · doi:10.1137/120904263
[23] Hansen PC, Nagy JG, O’Leary DP (2006) Deblurring images: matrices, spectra, and filtering. SIAM, Philadelphia · Zbl 1112.68127 · doi:10.1137/1.9780898718874
[24] He, B; Yuan, X, On the \(o(1/n)\) convergence rate of the Douglas-Rachford alternating direction method, SIAM J Numer Anal, 50, 700-709, (2012) · Zbl 1245.90084 · doi:10.1137/110836936
[25] Knoll, F; Bredies, K; Pock, T; Stollberger, R, Second order total generalized variation (TGV) for MRI, Magn Reson Med, 65, 480-491, (2011) · doi:10.1002/mrm.22595
[26] Li, F; Shen, C; Fan, J; Shen, C, Image restoration combining a total variational filter and a fourth-order filter, J Vis Commun Image Represent, 18, 322-330, (2007) · doi:10.1016/j.jvcir.2007.04.005
[27] Liu, G; Huang, TZ; Liu, J, High-order TVL1-based images restoration and spatially adapted regularization parameter selection, Comput Math Appl, 67, 2015-2026, (2014) · Zbl 1366.94058 · doi:10.1016/j.camwa.2014.04.008
[28] Liu, J; Huang, TZ; Xu, Z; Lv, XG, High-order total variation-based multiplicative noise removal with spatially adapted parameter selection, J Opt Soc Am A, 30, 1956-1966, (2013) · doi:10.1364/JOSAA.30.001956
[29] Liu, J; Huang, TZ; Selesnick, IW; Lv, XG; Chen, PY, Image restoration using total variation with overlapping group sparsity, Inf Sci, 295, 232-246, (2015) · Zbl 1360.94042 · doi:10.1016/j.ins.2014.10.041
[30] Lysaker, M; Lundervold, A; Tai, XC, Noise removal using fourth-order partial differential equations with applications to medical magnetic resonance images in space and time, IEEE Trans Image Process, 12, 1579-1590, (2003) · Zbl 1286.94020 · doi:10.1109/TIP.2003.819229
[31] Ma TH, Huang TZ, Zhao XL (2013) New regularization models for image denoising with a spatially dependent regularization parameter. Abst Appl Anal 2013(Article ID 729151):15. doi: 10.1155/2013/729151 · Zbl 1252.68329
[32] Montefusco, LB; Lazzaro, D, An iterative \(l_1\)-based image restoration algorithm with an adaptive parameter estimation, IEEE Trans Image Process, 21, 1676-1686, (2012) · Zbl 1373.94290 · doi:10.1109/TIP.2011.2173205
[33] Ng, MK; Weiss, P; Yuan, X, Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods, SIAM J Sci Comput, 32, 2710-2736, (2010) · Zbl 1217.65071 · doi:10.1137/090774823
[34] Pižurica, A; Philips, W; Lemahieu, I; Acheroy, M, A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising, IEEE Trans Image Process, 11, 545-557, (2002) · doi:10.1109/TIP.2002.1006401
[35] Rudin, L; Osher, S; Fatemi, E, Nonlinear total variation based noise removal algorithms, Phys D, 60, 259-268, (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[36] Şendur, L; Selesnick, IW, Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency, IEEE Trans Signal Process, 50, 2744-2756, (2002) · doi:10.1109/TSP.2002.804091
[37] Shi, J; Osher, S, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J Imag Sci, 1, 294-321, (2008) · Zbl 1185.94018 · doi:10.1137/070689954
[38] Steidl, G; Teuber, T, Removing multiplicative noise by Douglas-Rachford splitting, J Math Imag Vis, 36, 168-184, (2010) · Zbl 1287.94016 · doi:10.1007/s10851-009-0179-5
[39] Valkonen, T; Bredies, K; Knoll, F, Total generalized variation in diffusion tensor imaging, SIAM J Imag Sci, 6, 487-525, (2013) · Zbl 1322.94024 · doi:10.1137/120867172
[40] Wang, Y; Yang, J; Yin, W; Zhang, Y, A new alternating minimization algorithm for total variation image reconstruction, SIAM J Imaging Sci, 1, 248-272, (2008) · Zbl 1187.68665 · doi:10.1137/080724265
[41] Wen, YW; Chan, RH, Parameter selection for total-variation-based image restoration using discrepancy principle, IEEE Trans Image Process, 21, 1770-1781, (2012) · Zbl 1373.94440 · doi:10.1109/TIP.2011.2181401
[42] Wu, C; Tai, XC, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J Imaging Sci, 3, 300-339, (2010) · Zbl 1206.90245 · doi:10.1137/090767558
[43] You, YL; Kaveh, M, Fourth-order partial differential equations for noise removal, IEEE Trans Image Process, 9, 1723-1730, (2000) · Zbl 0962.94011 · doi:10.1109/83.869184
[44] Yun, S; Woo, H, A new multiplicative denoising variational model based on \(m\)th root transformation, IEEE Trans on Image Process, 21, 2523-2533, (2012) · Zbl 1373.94476 · doi:10.1109/TIP.2012.2185942
[45] Zhao, XL; Wang, F; Ng, KM, A new convex optimization model for multiplicative noise and blur removal, SIAM J Imaging Sci, 7, 456-475, (2014) · Zbl 1296.65093 · doi:10.1137/13092472X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.