×

Constructing the Pareto front for multi-objective Markov chains handling a strong Pareto policy approach. (English) Zbl 1393.90107

Summary: In this paper, we present a multi-objective solution of the Pareto front for a certain class of discrete-time ergodic controllable Markov chains. For solving the problem, we transform the original multi-objective problem into an equivalent nonlinear programming problem implementing the Lagrange principle. We then propose to adopt the Tikhonov’s regularization method to ensure the convergence of the cost functions to a unique point into the Pareto front. We show that Pareto policies are characterized as optimal policies. One of the fundamental problems related to the construction of the Pareto front is the existence and characterization of both, Pareto and strong Pareto policies. By introducing the Tikhonov’s regularizator, we ensure the existence of strong Pareto policies. This paper proposes a real solution to this problem. We formulate the original problem considering several constraints: (a) we employ the \(c\)-variable method for the introduction of linear constraints over the nonlinear problem and (b) restrict the cost functions, allowing points in the Pareto front to have a small distance from one another. The constraints imposed by the \(c\)-variable method make the problem computationally tractable and the restriction imposed by the small distance change ensures the continuation of the Pareto front. The resulting equation in this nonlinear system is an optimization problem for which the necessary and efficient condition of a minimum is solved using the projected gradient method. Moreover, we also prove the convergence conditions and compute the estimate rate of convergence of variables corresponding to the Lagrange principle and the Tikhonov’s regularization, respectively. We provide all the details needed to implement the proposed method in an efficient way. The usefulness of the method is successfully demonstrated by a numerical example.

MSC:

90C29 Multi-objective and goal programming
90C40 Markov and semi-Markov decision processes
47A52 Linear operators and ill-posed problems, regularization
65F22 Ill-posedness and regularization problems in numerical linear algebra

Software:

ASMO; SPEA2; NSGA-II
Full Text: DOI

References:

[1] Bueno L, Haeser G, Martinez J (2015) An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization. Optim Lett 1-11. doi:10.1007/s11590-015-0928-x
[2] Burachik, RS; Kaya, CY; Rizvi, MM, The new scalarization technique to approximate Pareto fronts on problems with disconnected feasible sets, J Optim Theory Appl, 162, 428-446, (2014) · Zbl 1298.90091 · doi:10.1007/s10957-013-0346-0
[3] Clempner, JB; Poznyak, AS, Simple computing of the customer lifetime value: a fixed local-optimal policy approach, J Syst Sci Syst Eng, 23, 439-459, (2014) · doi:10.1007/s11518-014-5260-y
[4] Clempner, JB; Poznyak, AS, Solving the Pareto front for nonlinear multiobjective Markov chains using the minimum Euclidian distance optimization method, Math Comput Simul, 119C, 142-160, (2016) · Zbl 1527.90196 · doi:10.1016/j.matcom.2015.08.004
[5] Das I, Dennis J (1998) Normal-boundary intersection: an alternate approach for generating pareto-optimal points in multicriteria optimization problems. SIAM J Optim 8:631-657 · Zbl 0911.90287
[6] Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York · Zbl 0970.90091
[7] Deb K, Agrawal S, Pratap A, Meyarivan T (2000a) Parallel problem solving from nature. Chap A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, vol VI. Springer, Berlin, pp 849-858 · Zbl 1137.90015
[8] Deb K, Pratap S, Meyarivan A (2000b) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: Proceedings of the parallel problem solving from nature VI conference. Springer, Paris, pp 849-858
[9] Dellnitz, M; Schutze, O; Hestermeyer, T, Covering Pareto sets by multilevel subdivision techniques, J Optim Theory Appl, 124, 113-155, (2005) · Zbl 1137.90015 · doi:10.1007/s10957-004-6468-7
[10] Dutta, J; Kaya, CY, A new scalarization and numerical method for constructing weak Pareto front of multi-objective optimization problems, Optimization, 60, 1091-1104, (2011) · Zbl 1232.65086 · doi:10.1080/02331934.2011.587006
[11] Ehrgott M (2005) Multicriteria optimization, 2. edn. Springer, Berlin · Zbl 1132.90001
[12] Eichfelder G (2008) Scalarization methods in multiobjective optimization. Springer, Berlin · Zbl 1145.90001 · doi:10.1007/978-3-540-79159-1
[13] Eichfelder, G, An adaptive scalarization method in multiobjective optimization, SIAM J Optim, 19, 1694-1718, (2009) · Zbl 1187.90252 · doi:10.1137/060672029
[14] Erfani, T; Utyuzhnikov, S, Directed search domain: a method for even generation of the Pareto frontier in multi-objective optimization, Eng Optim, 43, 467-484, (2011) · doi:10.1080/0305215X.2010.497185
[15] Fieldsend JE, Singh S (2002) A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence. In: Proceedings of the 2002 U.K. workshop on computational intelligence, Birmingham, p 3744
[16] Fliege J, Heseler A (2003) Constructing approximations to the efficient set of convex quadratic multi-objective problems. Tech. rep, University of Dortmund, Germany
[17] Fonseca CM, Fleming PJ, Zitzler E, Deb K, Thiele L (eds) (2003) Second international conference on evolutionary multi-criterion optimization (EMO 2003) · Zbl 0787.65037
[18] Garcia CB, Zangwill WI (1981) Pathways to solutions. In: Fixed points and equilibria. Prentice-Hall, Englewood Cliffs · Zbl 0512.90070
[19] Germeyer Y (1971) Introduction to the theory of operations research. Nauka, Moscow
[20] Germeyer Y (1976) Games with nonantagonistic interests. Nauka, Moscow
[21] Harada JK, Sakuma A, Kobayashi S, Ono I (2007) Uniform sampling of local pareto-optimal solution curves by pareto path following and its applications in multi-objective ga. In: Genetic and evolutionary computation conference (GECCO 2007), England, London, pp 813-820
[22] Hartikainen, M; Miettinen, K; Wiecek, MM, Constructing a Pareto front approximation for decision making, Math Methods Oper Res, 73, 209-234, (2011) · Zbl 1216.49002 · doi:10.1007/s00186-010-0343-0
[23] Hartikainen, M; Miettinen, K; Wiecek, MM, Paint: Pareto front interpolation for nonlinear multi-objective optimization, Comput Optim Appl, 52, 845-867, (2012) · Zbl 1259.90119 · doi:10.1007/s10589-011-9441-z
[24] Hillermeier, C, Generalized homotopy approach to multi-objective optimization, J Optim Theory Appl, 110, 557-583, (2001) · Zbl 1064.90041 · doi:10.1023/A:1017536311488
[25] Hillermeier C (2001b) Nonlinear multiobjective optimization: a generalized homotopy approach. In: International series of numerical mathematics, vol 135. Birkauser, Basel · Zbl 0966.90069
[26] Jahn J (1986) Mathematical vector optimization in partially ordered linear spaces, vol 31. Verlag Peter Lang GmbH, Berlin · Zbl 0578.90048
[27] Lovison, A, Global search perspectives for multi-objective optimization, J Global Optim, 57, 385-398, (2013) · Zbl 1274.90274 · doi:10.1007/s10898-012-9943-y
[28] Martin B, Goldsztejn A, Granvilliers L, Jermann C (2014) On continuation methods for non-linear bi-objective optimization: towards a certified interval-based approach. J Global Optim. doi:10.1007/s10898-014-0201-3 · Zbl 1332.90251
[29] Messac, A; Mattson, C, Generating well-distributed sets of Pareto points for engineering design using physical programming, Optim Eng, 3, 431-450, (2002) · Zbl 1079.90627 · doi:10.1023/A:1021179727569
[30] Messac, A; Mattson, C, The normalized normal constraint method with guarantee of even representation of complete Pareto frontier, AIAA J, 42, 2101-2111, (2004) · doi:10.2514/1.8977
[31] Messac, A; Ismail-Yahaya, A; Mattson, C, The normalized normal constraint method for generating the Pareto frontier, Struct Multidiscipl Optim, 25, 86-98, (2003) · Zbl 1243.90200 · doi:10.1007/s00158-002-0276-1
[32] Miettinen K (1999) Nonlinear multi-objective optimization. Kluwer Academic Publishers, Amsterdam · Zbl 0949.90082
[33] Mostaghim S (2004) Multi-objective evolutionary algorithms, data structures, convergence and diversity. PhD thesis, University of Paderborn
[34] Pareto V (1896) Cours d’+conomie Politique ProfessT a l’UniversitT de Lausanne, vol I. UniversitT de Lausanne, Lausanne · Zbl 1079.90627
[35] Pareto V (1897) Cours d’+conomie Politique ProfessT a l’UniversitT de Lausanne, vol II. UniversitT de Lausanne, Lausanne · Zbl 1243.90200
[36] Pereyra, V, Fast computation of equispaced Pareto manifolds and Pareto fronts for multi-objective optimization problems, Math Comput Simul, 79, 1935-1947, (2009) · Zbl 1159.65060 · doi:10.1016/j.matcom.2007.02.007
[37] Pereyra, V; Saunders, M; Castillo, J, Equispaced Pareto front construction for constrained bi-objective optimization, Math Comput Model, 57, 2122-2131, (2013) · Zbl 1286.90138 · doi:10.1016/j.mcm.2010.12.044
[38] Potschka, A; Logist, F; Impe, J; Bock, H, Tracing the Pareto frontier in biobjective optimization problems by ODE techniques, Numer Algorith, 217-233, 217-233, (2011) · Zbl 1217.65110 · doi:10.1007/s11075-010-9425-6
[39] Poznyak AS (2008) Advanced mathematical tools for automatic control engineers. Deterministic technique, vol 1. Elsevier, Amsterdam · Zbl 1216.49002
[40] Poznyak AS (2009) Advance mathematical tools for automatic control engineers. Deterministic techniques, vol 2. Elsevier, Amsterdam
[41] Poznyak AS, Najim K, Gomez-Ramirez E (2000) Self-learning control of finite markov chains. Marcel Dekker, New York · Zbl 0960.93001
[42] Rakowska, J; Haftka, RT; Watson, LT, Tracing the efficient curve for multi-objective control structure optimization, SIAM J Optim, 3, 654-667, (1993) · Zbl 0787.65037 · doi:10.1137/0803033
[43] Rheinboldt, WC; Burkardt, J, Pitcon: a program for a locally parametrized continuation process, ACM Trans Math Softw (TOMS), 9, 236-241, (1983) · doi:10.1145/357456.357461
[44] Ringkamp, M; Ober-Blbaum, S; Dellnitz, M; Schutze, O, Handling high-dimensional problems with multi-objective continuation methods via successive approximation of the tangent space, Eng Optim, 44, 1117-1146, (2012) · doi:10.1080/0305215X.2011.634407
[45] Ruzika, S; Wiecek, MM, Approximation methods in multi-objective programming, J Optim Theory Appl, 126, 473-501, (2005) · Zbl 1093.90057 · doi:10.1007/s10957-005-5494-4
[46] Schaffler, S; Schultz, R; Weinzierl, K, A stochastic method for the solution of unconstrained vector optimization problems, J Optim Theory Appl, 114, 209-222, (2002) · Zbl 1022.90027 · doi:10.1023/A:1015472306888
[47] Schittkowski K (1999) Easy-opt: An interactive optimization system with automatic differentiation—user’s guide. Tech. rep, Department of Mathematics, University of Bayreuth
[48] Schutze O, Mostaghim S, Dellnitz M, Teich J (2003) Covering pareto sets by multilevel evolutionary subdivision techniques. In: Fonseca CM, Fleming PJ, Zitzler E, Deb K, Thiele L (eds) Evolutionary multi-criterion optimization · Zbl 1036.90552
[49] Steuer RE (1986) Multiple criteria optimization: theory, computation, and applications. Wiley, New York · Zbl 1298.90091
[50] Steuer RE (1989) Multiple criteria decision making and risk analysis using microcomputers. In: The Tchebyche procedure of interactive multiple objective programming. Springer, Berlin, pp 235-249
[51] Tikhonov A, Goncharsky A, Stepanov V, Yagola AG (1995) Numerical methods for the solution of Ill-posed problems. Kluwer Academic Publishers, The Netherlands · Zbl 0831.65059
[52] Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed problems. Winston & Sons, Washington · Zbl 0354.65028
[53] Toth, BG; Kreinovich, V, Verified methods for computing Pareto sets: general algorithmic analysis, Int J Appl Math Comput Sci, 19, 369-380, (2009) · Zbl 1300.90041
[54] Utyuzhnikov, S; Fantini, P; Guenov, M, A method for generating a well-distributed Pareto set in nonlinear multi-objective optimization, J Comput Appl Math, 223, 820-841, (2009) · Zbl 1165.90637 · doi:10.1016/j.cam.2008.03.011
[55] Zangwill WI (1969) Nonlinear programming: a unified approach. Prentice-Hall, Englewood Cliffs · Zbl 0195.20804
[56] Zitzler E, Laumanns M, Thiele L (2002) Spea2: improving the strength pareto evolutionary algorithm. In: evolutionary methods for design, optimisation and control with applications to industrial problems. Center for Numerical Methods in Engineering (CIMNE 2002), Barcelona, pp 95-100 · Zbl 1232.65086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.