×

Jacobian consistency of a one-parametric class of smoothing Fischer-Burmeister functions for SOCCP. (English) Zbl 1395.90224

Summary: The Jacobian consistency of smoothing functions plays an important role for achieving the rapid convergence of Newton methods or Newton-like methods with an appropriate parameter control. In this paper, we study the properties, derive the computable formula for the Jacobian matrix and prove the Jacobian consistency of a one-parametric class of smoothing Fischer-Burmeister functions for second-order cone complementarity problems proposed by J. Tang et al. [ibid. 33, No. 3, 655–669 (2014; Zbl 1308.90173)]. Then we apply its Jacobian consistency to a smoothing Newton method with the appropriate parameter control presented by X. Chen et al. [Math. Comput. 67, No. 222, 519–540 (1998; Zbl 0894.90143)], and show the global convergence and local quadratic convergence of the algorithm for solving the SOCCP under rather weak assumptions.

MSC:

90C30 Nonlinear programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
65K10 Numerical optimization and variational techniques
Full Text: DOI

References:

[1] Alizadeh, F; Goldfarb, D, Second-order cone programming, Math Program, 95, 3-51, (2003) · Zbl 1153.90522 · doi:10.1007/s10107-002-0339-5
[2] Che, HT; Wang, YJ; Li, MX, A smoothing inexact Newton method for \(P_{0}\) nonlinear complementarity problem, Front Math China, 7, 1043-1058, (2012) · Zbl 1292.90294 · doi:10.1007/s11464-012-0245-y
[3] Chen, J-S; Pan, SH; Lin, TC, A smoothing Newton method based on the generalized fischer-burmeister function for mcps, Nonlinear Anal, 72, 3739-3758, (2010) · Zbl 1198.90372 · doi:10.1016/j.na.2010.01.012
[4] Chen, J-S; Pan, SH, A survey on SOC complementarity functions and solution methods for SOCPs and soccps, Pac J Optim, 8, 33-74, (2012) · Zbl 1286.90148
[5] Chen, X; Qi, L; Sun, D, Global and superlinear convergence of the smooothing Newton method and its application to general box constrained variational inequalities, Math Comput, 67, 519-540, (1998) · Zbl 0894.90143 · doi:10.1090/S0025-5718-98-00932-6
[6] Chi, XN; Liu, SY, A one-step smoothing Newton methods for second-order cone programming, J Comput Appl Math, 223, 114-123, (2009) · Zbl 1155.65045 · doi:10.1016/j.cam.2007.12.023
[7] Chi, XN; Wan, ZP; Zhu, ZB, The Jacobian consistency of a smoothed generalized fischer-burmeister function for the second-order cone complementarity problem, Pac J Optim, 11, 3-27, (2015) · Zbl 1379.90040
[8] Clarke FH (1983) Optimization and nonsmooth analysis. Wiley, New York · Zbl 0582.49001
[9] Facchinei F, Pang JS (2003) Finite-dimensional variational inequalities and complementarity problems. Springer, New York · Zbl 1062.90002
[10] Fang, L; Feng, ZZ, A smoothing Newton-type method for second-order cone programming problems based on a new smoothing fischer-burmeister function, Comput Appl Math, 30, 569-588, (2011) · Zbl 1401.90152 · doi:10.1590/S1807-03022011000300005
[11] Fang, L; He, GP; Hu, YH, A new smoothing Newton-type method for second-order cone programming problems, Appl Math Comput, 215, 1020-1029, (2009) · Zbl 1183.65065 · doi:10.1016/j.amc.2009.06.029
[12] Faraut U, Korányi A (1994) Analysis on symmetric cones. Oxford University Press, New York · Zbl 0841.43002
[13] Fukushima, M; Luo, Z; Tseng, P, Smoothing functions for second-order-cone complementarity problems, SIAM J Optim, 12, 436-460, (2002) · Zbl 0995.90094 · doi:10.1137/S1052623400380365
[14] Hayashi, S; Yamashita, N; Fukushima, M, A combined smoothing and regularized method for monontone second-order cone complementarity problems, SIAM J Optim, 15, 593-615, (2005) · Zbl 1114.90139 · doi:10.1137/S1052623403421516
[15] Huang, ZH; Han, J; Xu, D; Zhang, L, The boundedness of the iteration sequence generated by the noninterior continuation methods for solving the \(P_{0}\) function non-linear complementarity problem, Sci China, 44, 1107-1114, (2001) · Zbl 1002.90072 · doi:10.1007/BF02877427
[16] Huang, ZH; Ni, T, Smoothing algorithms for complementarity problems over symmetric cones, Comput Optim Appl, 45, 557-579, (2010) · Zbl 1198.90373 · doi:10.1007/s10589-008-9180-y
[17] Kuo, YJ; Mittelmann, HD, Interior point methods for second-order cone programming and OR applications, Comput Optim Appl, 28, 255-285, (2004) · Zbl 1084.90046 · doi:10.1023/B:COAP.0000033964.95511.23
[18] Lobo, MS; Vandenberghe, L; Boyd, S; Lebret, H, Applications of second-order cone programming, Linear Algebra Appl, 284, 193-228, (1998) · Zbl 0946.90050 · doi:10.1016/S0024-3795(98)10032-0
[19] Mifflin, R, Semismooth and semiconvex functions in constrained optimization, SIAM J Control Optim, 15, 957-972, (1977) · Zbl 0376.90081 · doi:10.1137/0315061
[20] Narushima, Y; Sagara, N; Ogasawara, H, A smoothing Newton method with fischer-burmeister function for second-order cone complementarity problems, J Optim Theory Appl, 149, 79-101, (2011) · Zbl 1221.90085 · doi:10.1007/s10957-010-9776-0
[21] Ogasawara, H; Narushima, Y, The Jacobian consistency of a smoothed fischer-burmeister function associated with second-order cones, J Math Anal Appl, 394, 231-247, (2012) · Zbl 1278.90406 · doi:10.1016/j.jmaa.2012.04.050
[22] Qi, L; Sun, J, A nonsmooth version of newton’s method, Math Program, 58, 353-367, (1993) · Zbl 0780.90090 · doi:10.1007/BF01581275
[23] Qi, L; Sun, D; Zhou, G, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities, Math Program, 87, 1-35, (2000) · Zbl 0989.90124 · doi:10.1007/s101079900127
[24] Sun, D; Sun, J, Strong semismoothness of fischer-burmeister SDC and SOC complementarity functions, Math Program, 103, 575-581, (2005) · Zbl 1099.90062 · doi:10.1007/s10107-005-0577-4
[25] Tang, JY; Dong, L; Fang, L; Zhou, JC, A one-parametric class of smoothing functions for second-order cone programming, Comput Appl Math, 33, 655-669, (2014) · Zbl 1308.90173 · doi:10.1007/s40314-013-0087-6
[26] Tang, JY; He, GP; Dong, L; Fang, L, A smoothing Newton method for the second-order cone complementarity problem, Appl Math, 58, 223-247, (2013) · Zbl 1274.90268 · doi:10.1007/s10492-013-0011-9
[27] Wang, GQ; Bai, YQ, A class of polynomial interior point algorithms for the Cartesian P-matrix linear complementarity problem over symmetric cones, J Optim Theory Appl, 152, 739-772, (2012) · Zbl 1251.90392 · doi:10.1007/s10957-011-9938-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.