×

A continuous interior penalty finite element method for a third-order singularly perturbed boundary value problem. (English) Zbl 1398.65186

Summary: We propose a continuous interior penalty finite element method designed for a third-order singularly perturbed problem. Using higher order polynomials on Shishkin-type layer-adapted meshes, a robust convergence has been proved in the corresponding energy norm. Moreover, we show numerical experiments which support our theoretical findings.

MSC:

65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Brenner, SC; Sung, L-J, \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J Sci Comput, 22, 83-118, (2005) · Zbl 1071.65151 · doi:10.1007/s10915-004-4135-7
[2] Ern A, Guermond J-L (2004) Theory and practice of finite elements. Springer, New York · Zbl 1059.65103 · doi:10.1007/978-1-4757-4355-5
[3] Franz, S; Roos, H-G; Wachtel, A, A \(C^0\) interior penalty method for a singularly-perturbed fourth-order elliptic problem on a layer-adapted mesh, Numer Methods Partial Differ Equ, 30, 838-861, (2014) · Zbl 1293.65151 · doi:10.1002/num.21839
[4] Gartland, EC, Graded-mesh difference schemes for singularly perturbed two-point boundary value problems, Math Comput, 51, 631-657, (1988) · Zbl 0699.65063 · doi:10.1090/S0025-5718-1988-0935072-1
[5] Howes, FA, The asymptotic solution of a class of third-order boundary value problems arising in the theory of thin film flows, SIAM J Appl Math, 43, 993-1004, (1983) · Zbl 0532.76042 · doi:10.1137/0143065
[6] Howes, FA, Asymptotic structures in nonlinear dissipative and dispersive systems, Phys D Nonlinear Phenom, 12, 382-390, (1984) · Zbl 0575.34013 · doi:10.1016/0167-2789(84)90542-6
[7] Linss, T, The necessity of shishkin decompositions, Appl Math Lett, 14, 891-896, (2001) · Zbl 0986.65071 · doi:10.1016/S0893-9659(01)00061-1
[8] Linss T (2010) Layer-adapted meshes for reaction-convection-diffusion problems. Springer, Heidelberg · Zbl 1202.65120 · doi:10.1007/978-3-642-05134-0
[9] O’Malley RE (1974) Introduction to singular perturbations. Academic Press, New York · Zbl 0287.34062
[10] Roos H-G (2012) Robust numerical methods for singularly perturbed differential equations: a survey covering 2008-2012. ISRN Appl Math 2012:Article ID 379547. doi:10.5402/2012/379547 · Zbl 1264.65116
[11] Roos H-G, Stynes M, Tobiska L (2008) Robust numerical methods for singularly perturbed differential equations. Springer, Berlin · Zbl 1155.65087
[12] Roos H-G, Teofanov Lj, Uzelac Z (2015a) Graded meshes for higher order FEM. J Comput Math 33(1):1-16 · Zbl 1340.65158
[13] Roos H-G, Teofanov Lj, Uzelac Z (2015b) Uniformly convergent difference schemes for a third order singularly perturbed boundary value problem. Appl Numer Math 96:108-117 · Zbl 1321.65122
[14] Roos, H-G; Linss, T, Sufficient conditions for uniform convergence on layer-adapted grids, Computing, 63, 27-45, (1999) · Zbl 0931.65085 · doi:10.1007/s006070050049
[15] Steinbach O (2008) Numerical approximation methods for elliptic boundary value problems. Springer, New York · Zbl 1153.65302 · doi:10.1007/978-0-387-68805-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.