×

Chimera states in a network-organized public goods game with destructive agents. (English) Zbl 1378.91027

Summary: We found that a network-organized metapopulation of cooperators, defectors, and destructive agents playing the public goods game with mutations can collectively reach global synchronization or chimera states. Global synchronization is accompanied by a collective periodic burst of cooperation, whereas chimera states reflect the tendency of the networked metapopulation to be fragmented in clusters of synchronous and incoherent bursts of cooperation. Numerical simulations have shown that the system’s dynamics switches between these two steady states through a first order transition. Depending on the parameters determining the dynamical and topological properties, chimera states with different numbers of coherent and incoherent clusters are observed. Our results present the first systematic study of chimera states and their characterization in the context of evolutionary game theory. This provides a valuable insight into the details of their occurrence, extending the relevance of such states to natural and social systems.{
©2016 American Institute of Physics}

MSC:

91A22 Evolutionary games
91B18 Public goods

References:

[1] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics (1998) · Zbl 0914.90287
[2] Sigmund, K., The Calculus of Selfishness (2010) · Zbl 1189.91010
[3] Hardin, G., Science, 162, 1243 (1968) · doi:10.1126/science.162.3859.1243
[4] Hauert, C.; De Monte, S.; Hofbauer, J.; Sigmund, K., Science, 296, 5570, 1129 (2002) · doi:10.1126/science.1070582
[5] Hauert, C.; Monte, S. D.; Hofbauer, J.; Sigmund, K., J. Theor. Biol., 218, 187 (2002) · doi:10.1006/jtbi.2002.3067
[6] Arenas, A.; Camacho, J.; Cuesta, J. A.; Requejo, R. J., J. Theor. Biol., 279, 1, 113 (2011) · Zbl 1397.91060 · doi:10.1016/j.jtbi.2011.03.017
[7] Requejo, R. J.; Camacho, J.; Cuesta, J. A.; Arenas, A., Phys. Rev. E, 86, 026105 (2012) · doi:10.1103/PhysRevE.86.026105
[8] Kerr, B.; Riley, M. A.; Feldman, M. W.; Bohannan, B. J., Nature, 418, 171 (2002) · doi:10.1038/nature00823
[9] Semmann, D.; Krambeck, H.-J.; Milinski, M., Nature, 425, 390 (2003) · doi:10.1038/nature01986
[10] Mobilia, M., J. Theor. Biol., 264, 1 (2010) · Zbl 1406.91043 · doi:10.1016/j.jtbi.2010.01.008
[11] Toupo, D. F. P.; Strogatz, S. H., Phys. Rev. E, 91, 052907 (2015) · doi:10.1103/PhysRevE.91.052907
[12] Vickers, G. T.; Huston, V. C. L.; Budd, C. J., J. Math. Biol., 31, 411-430 (1993) · Zbl 0773.92014 · doi:10.1007/BF00163924
[13] Wakano, J. Y.; Nowak, M. A.; Hauert, C., Proc. Natl. Acad. Sci. U.S.A., 106, 19, 7910 (2009) · doi:10.1073/pnas.0812644106
[14] Wakano, J. Y.; Hauert, C., J. Theor. Biol., 268, 1, 30 (2011) · Zbl 1411.92261 · doi:10.1016/j.jtbi.2010.09.036
[15] Szabó, G.; Borsos, I., Phys. Rep., 624, 1-60 (2016) · Zbl 1357.91008 · doi:10.1016/j.physrep.2016.02.006
[16] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Phys. Rep., 469, 93-153 (2008) · doi:10.1016/j.physrep.2008.09.002
[17] Pannagio, M. J.; Abrams, D., Nonlinearity, 28, R67 (2015) · Zbl 1392.34036 · doi:10.1088/0951-7715/28/3/R67
[18] Kuramoto, Y.; Battogtokh, D., Nonlinear Phenomena in Complex Systems, 5, 380 (2002)
[19] Abrams, D. M.; Strogatz, S. H., Phys. Rev. Lett., 93, 174102 (2004) · doi:10.1103/PhysRevLett.93.174102
[20] Schmidt, L.; Schönleber, K.; Krischer, K.; García-Morales, V., Chaos, 24, 013102 (2014) · doi:10.1063/1.4858996
[21] Sethia, G. C.; Sen, A., Phys. Rev. Lett., 112, 144101 (2014) · doi:10.1103/PhysRevLett.112.144101
[22] Yeldesbay, A.; Pikovsky, A.; Rosenblum, M., Phys. Rev. Lett., 112, 144103 (2014) · doi:10.1103/PhysRevLett.112.144103
[23] Böhm, F.; Zakharova, A.; Lüdge, K.; Schöll, E., Phys. Rev. E, 91, 040901 (2015) · doi:10.1103/PhysRevE.91.040901
[24] Laing, C. R., Phys. Rev. E, 92, 050904 (2015) · doi:10.1103/PhysRevE.92.050904
[25] Hizanidis, J.; Lazarides, N.; Tsironis, G. P., Phys. Rev. E, 94, 032219 (2016) · doi:10.1103/PhysRevE.94.032219
[26] Clerc, M. G.; Coulibaly, S.; Ferré, M. A.; García-Nũstes, M. A.; Rojas, R. G., Phys. Rev. E, 93, 052204 (2016) · doi:10.1103/PhysRevE.93.052204
[27] Hizanidis, J.; Kouvaris, N. E.; Antonopoulos, C. G., Cybernetics and Physics, 4, 17 (2015)
[28] Hizanidis, J.; Kouvaris, N. E.; Zamora-López, G.; Díaz-Guilera, A.; Antonopoulos, C. G., Sci. Rep., 6, 19845 (2016) · doi:10.1038/srep19845
[29] Santos, M. S.; Szezech, J. D. Jr.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.; Viana, R. L.; Kurths, J.
[30] Laing, C. R.; Chow, C. C., Neural Comput., 13, 1473 (2001) · Zbl 0978.92004 · doi:10.1162/089976601750264974
[31] Sakaguchi, H., Phys. Rev. E, 73, 031907 (2006) · doi:10.1103/PhysRevE.73.031907
[32] Rattenborg, N. C.; Amlaner, C. J.; Lima, S. L., Neurosci. Biobehav. Rev., 24, 817 (2000) · doi:10.1016/S0149-7634(00)00039-7
[33] Andrzejak, R. G.; Rummel, C.; Mormann, F.; Schindler, K., Sci. Rep., 6, 23000 (2016) · doi:10.1038/srep23000
[34] Wolfrum, M.; Omel’chenko, O. E., Phys. Rev. E, 84, 015201 (2011) · doi:10.1103/PhysRevE.84.015201
[35] Sieber, J.; Omel’chenko, O. E.; Wolfrum, M., Phys. Rev. Lett., 112, 054102 (2014) · doi:10.1103/PhysRevLett.112.054102
[36] Bick, C.; Martens, E. A., New J. Phys., 17, 033030 (2015) · Zbl 1452.34069 · doi:10.1088/1367-2630/17/3/033030
[37] Isele, T.; Hizanidis, J.; Provata, A.; Hövel, P., Phys. Rev. E, 93, 022217 (2016) · doi:10.1103/PhysRevE.93.022217
[38] Omelchenko, I.; Omel’chenko, O. E.; Zakharova, A.; Wolfrum, M.; Schöll, E., Phys. Rev. Lett., 116, 114101 (2016) · doi:10.1103/PhysRevLett.116.114101
[39] Hagerstrom, A. M.; Murphy, T. E.; Roy, R.; Hovel, P.; Omelchenko, I.; Scholl, E., Nat. Phys., 8, 9, 658 (2012) · doi:10.1038/nphys2372
[40] Martens, E. A.; Thutupalli, S.; Fourrière, A.; Hallatschek, O., Proc. Natl. Acad. Sci. U.S.A., 110, 26, 10563 (2013) · doi:10.1073/pnas.1302880110
[41] Tinsley, M. R.; Nkomo, S.; Showalter, K., Nat. Phys., 8, 9, 662 (2012) · doi:10.1038/nphys2371
[42] Nkomo, S.; Tinsley, M. R.; Showalter, K., Phys. Rev. Lett., 110, 244102 (2013) · doi:10.1103/PhysRevLett.110.244102
[43] Wickramasinghe, M.; Kiss, I. Z., PLoS One, 8, e80586 (2013) · doi:10.1371/journal.pone.0080586
[44] Requejo, R. J.; Díaz-Guilera, A., Phys. Rev. E, 94, 022301 (2016) · doi:10.1103/PhysRevE.94.022301
[45] Taylor, P. D.; Jonker, L. B., Math. Biosci., 40, 145 (1978) · Zbl 0395.90118 · doi:10.1016/0025-5564(78)90077-9
[46] Hofbauer, J.; Schuster, P.; Sigmund, K., J. Theor. Biol., 81, 609 (1979) · doi:10.1016/0022-5193(79)90058-4
[47] Omelchenko, I.; Omel’chenko, O. E.; Hövel, P.; Schöll, E., Phys. Rev. Lett., 110, 224101 (2013) · doi:10.1103/PhysRevLett.110.224101
[48] Hizanidis, J.; Panagakou, E.; Omelchenko, I.; Schöll, E.; Hövel, P.; Provata, A., Phys. Rev. E, 92, 012915 (2015) · doi:10.1103/PhysRevE.92.012915
[49] Kemeth, F. P.; Haugland, S. W.; Schmidt, L.; Kevrekidis, I. G.; Krischer, K., Chaos, 26, 094815 (2016) · doi:10.1063/1.4959804
[50] Maistrenko, Y.; Vasylenko, A.; Sudakov, O.; Levchenko, R.; Maistrenko, V. L., Int. J. Bifurcation Chaos, 24, 1440014 (2014) · Zbl 1300.34082 · doi:10.1142/S0218127414400148
[51] Vüllings, A.; Hizanidis, J.; Omelchenko, I.; Hövel, P., New J. Phys., 16, 123039 (2014) · doi:10.1088/1367-2630/16/12/123039
[52] Sethia, G. C.; Sen, A.; Atay, F. M., Phys. Rev. Lett., 100, 144102 (2008) · doi:10.1103/PhysRevLett.100.144102
[53] Wiltermuth, S. S.; Heath, C., Psychol. Sci., 20, 1-5 (2009) · doi:10.1111/j.1467-9280.2008.02253.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.