×

Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions. (English) Zbl 1378.34081

Summary: Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.{
©2016 American Institute of Physics}

MSC:

34F05 Ordinary differential equations and systems with randomness
60J60 Diffusion processes
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
62M15 Inference from stochastic processes and spectral analysis
Full Text: DOI

References:

[1] Simiu, E., Chaotic Transitions in Deterministic and Stochastic Dynamical Systems: Applications of Melnikov Processes in Engineering, Physics, and Neuroscience (2014)
[2] Kim, S.; Reichl, L., Phys. Rev. E, 53, 3088 (1996) · doi:10.1103/PhysRevE.53.3088
[3] Kortlüke, O.; Kuzovkov, V.; Von Niessen, W., Phys. Rev. Lett., 81, 2164 (1998) · doi:10.1103/PhysRevLett.81.2164
[4] Wu, C.; Lei, Y. M.; Fang, T., Chaos Solitons Fractals, 27, 459 (2006) · Zbl 1102.37312 · doi:10.1016/j.chaos.2005.04.035
[5] Zhang, B.; Qiu, D. Y.; Luo, X. S., Nonlinear Dyn., 61, 241 (2010) · Zbl 1204.37036 · doi:10.1007/s11071-009-9645-2
[6] Li, J. R.; Xu, W.; Yang, X.; Sun, Z. K., J. Sound Vib., 309, 330 (2008) · doi:10.1016/j.jsv.2007.05.027
[7] Lei, Y. M.; Fu, R., Europhys. Lett., 112, 60005 (2016) · doi:10.1209/0295-5075/112/60005
[8] Field, R. J.; Györgyi, L., Chaos in Chemistry and Biochemistry (1993)
[9] Venkatasubramanian, V.; Leung, H., IEEE Signal Process. Lett., 12, 528 (2005) · doi:10.1109/LSP.2005.849497
[10] Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G., Chaos Solitons Fractals, 23, 1749 (2005) · Zbl 1069.94012 · doi:10.1016/S0960-0779(04)00440-0
[11] Hirata, Y.; Oku, M.; Aihara, K., Chaos, 22, 047511 (2012) · doi:10.1063/1.4738191
[12] Kodba, S.; Perc, M.; Marhl, M., Eur. J. Phys., 26, 205 (2005) · doi:10.1088/0143-0807/26/1/021
[13] Perc, M.; Marhl, M., Chaos Solitons Fractals, 27, 395 (2006) · Zbl 1149.92300 · doi:10.1016/j.chaos.2005.03.045
[14] Gosak, M.; Marhl, M.; Perc, M., Int. J. Bifurcation Chaos, 18, 869 (2008) · doi:10.1142/S0218127408020720
[15] Gosak, M.; Marhl, M.; Perc, M., Eur. Phys. J. B, 62, 171 (2008) · doi:10.1140/epjb/e2008-00132-y
[16] Kostić, S.; Franović, I.; Perc, M.; Vasović, N.; Todorović, K., Sci. Rep., 4, 5401 (2014) · doi:10.1038/srep05401
[17] Crutchfield, J.; Nauenberg, M.; Rudnick, J., Phys. Rev. Lett., 46, 933 (1981) · doi:10.1103/PhysRevLett.46.933
[18] Frey, M.; Simiu, E., Physica D, 63, 321 (1993) · Zbl 0768.60039 · doi:10.1016/0167-2789(93)90114-G
[19] Gan, C. B., Chaos Solitons Fractals, 25, 1069 (2005) · Zbl 1099.37065 · doi:10.1016/j.chaos.2004.11.070
[20] Sommerer, J. C.; Ott, E.; Grebogi, C., Phys. Rev. A, 43, 1754 (1991) · doi:10.1103/PhysRevA.43.1754
[21] Holmes, P. J., Philos. Trans. R. Soc. London, Ser. A, 292, 419 (1979) · Zbl 0423.34049 · doi:10.1098/rsta.1979.0068
[22] Wiggins, S., Global Bifurcations and Chaos: Analytical Methods (1990)
[23] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (1990) · Zbl 0701.58001
[24] Lin, H.; Yim, S. C. S., Appl. Ocean Res., 17, 185 (1995) · doi:10.1016/0141-1187(95)00014-3
[25] Lin, H.; Yim, S. C. S., ASME J. Appl. Mech., 63, 509 (1996) · Zbl 0875.70115 · doi:10.1115/1.2788897
[26] Li, S.; Li, Q.; Li, J. R.; Feng, J. Q., Nonlinear Anal.: Real World Appl., 12, 1950 (2011) · Zbl 1228.34094 · doi:10.1016/j.nonrwa.2010.12.011
[27] Patzold, M.; Killat, U.; Laue, F.; Li, Y., IEEE Trans. Veh. Technol., 47, 254 (1998) · doi:10.1109/25.661052
[28] Rangaswamy, M.; Weiner, D. D.; Ozturk, A., IEEE Trans. Aerosp. Electron. Syst., 29, 111 (1993) · doi:10.1109/7.249117
[29] Liu, B.; Munson, D. C., IEEE Trans. Acoust. Speech Signal Process., 30, 973 (1982) · Zbl 0562.60051 · doi:10.1109/TASSP.1982.1163990
[30] Kontorovich, V. Y.; Lyandres, V. Z., IEEE Trans. Signal Process., 43, 2372 (1995) · doi:10.1109/78.469853
[31] Grigoriu, M., J. Eng. Mech., 124, 121 (1998) · doi:10.1061/(ASCE)0733-9399(1998)124:2(121)
[32] Primak, S.; Lyandres, V.; Kaufman, O.; Kliger, M., Signal Process., 72, 61 (1999) · Zbl 1053.62557 · doi:10.1016/S0165-1684(98)00165-0
[33] Lin, Y. K.; Cai, G. Q., Probabilistic Structural Dynamics: Advanced Theory and Applications (1995)
[34] Cai, G. Q.; Lin, Y. K., Phys. Rev. E, 54, 299 (1996) · doi:10.1103/PhysRevE.54.299
[35] Barik, D.; Ghosh, P. K.; Ray, D. S., J. Stat. Mech., 03, 03010 (2006) · doi:10.1088/1742-5648/2006/03/P03010
[36] Guckenheimer, J.; Holmes, P. J., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1984)
[37] Frey, M.; Simiu, E., Proceedings of the 9th Engineering Mechanics Conference, 660-663 (1992)
[38] Honeycutt, R. L., Phys. Rev. A, 45, 604 (1992) · doi:10.1103/PhysRevA.45.604
[39] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Physica D, 16, 285 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[40] Sano, M.; Sawada, Y., Phys. Rev. Lett., 55, 1082 (1985) · doi:10.1103/PhysRevLett.55.1082
[41] Rosenstein, M. T.; Collins, J. J.; De Luca, C. J., Physica D, 65, 117 (1993) · Zbl 0779.58030 · doi:10.1016/0167-2789(93)90009-P
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.