×

Searching chaotic saddles in high dimensions. (English) Zbl 1378.37122

Summary: We propose new methods to numerically approximate non-attracting sets governing transiently chaotic systems. Trajectories starting in a vicinity \(\Omega\) of these sets escape \(\Omega\) in a finite time \(\tau\) and the problem is to find initial conditions \(\boldsymbol{x} \in \Omega\) with increasingly large \(\tau = \tau(\boldsymbol{x})\). We search points \(\boldsymbol{x}^\prime\) with \(\tau(\boldsymbol{x}^\prime) > \tau(\boldsymbol{x})\) in a search domain in \(\Omega\). Our first method considers a search domain with size that decreases exponentially in \(\tau\), with an exponent proportional to the largest Lyapunov exponent \(\lambda_{1}\). Our second method considers anisotropic search domains in the tangent unstable manifold, where each direction scales as the inverse of the corresponding expanding singular value of the Jacobian matrix of the iterated map. We show that both methods outperform the state-of-the-art Stagger-and-Step method [D. Sweet et al., Phys. Rev. Lett. 86, No. 11, 2261 (2001; doi:10.1103/PhysRevLett.86.2261)] but that only the anisotropic method achieves an efficiency independent of \(\tau\) for the case of high-dimensional systems with multiple positive Lyapunov exponents. We perform simulations in a chain of coupled Hénon maps in up to 24 dimensions (12 positive Lyapunov exponents). This suggests the possibility of characterizing also non-attracting sets in spatio-temporal systems.{
©2016 American Institute of Physics}

MSC:

37M99 Approximation methods and numerical treatment of dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

References:

[1] Lai and, Y.-C.; Tél, T.; Antman, S. S.; Marsden, J. E.; Sirovich, L., Transient Chaos: Complex Dynamics in Finite Time Scales, 173 (2010)
[2] Tél, T.; Lai, Y.-C., Phys. Rep., 460, 245 (2008) · doi:10.1016/j.physrep.2008.01.001
[3] Rempel, E. L.; Chian, A. C.-L., Phys. Rev. Lett., 98, 014101 (2007) · doi:10.1103/PhysRevLett.98.014101
[4] Taylor, S. R.; Campbell, S. A., Phys. Rev. E - Stat., Nonlinear Soft Matter Phys., 75, 046215 (2007) · doi:10.1103/PhysRevE.75.046215
[5] The higher the escape time, the nearer the point is to the stable manifold of the invariant set, the nearer \(F^τ^{/2}\)(x) is to the chaotic saddle and nearer \(F^τ\)(x) is to the unstable manifold.\(^1\)
[6] Sweet, D.; Nusse, H. E.; Yorke, J. A., Phys. Rev. Lett., 86, 2261 (2001) · doi:10.1103/PhysRevLett.86.2261
[7] Bollt, E. M., Int. J. Bifurcation Chaos, 15, 1615 (2005) · Zbl 1092.37530 · doi:10.1142/S0218127405012892
[8] de Moura, A. P. S.; Grebogi, C., Phys. Rev. Lett., 86, 2778 (2001) · doi:10.1103/PhysRevLett.86.2778
[9] Dellago, C.; Bolhuis, P.; Geissler, P.; Prigogine, I.; Rice, S. A., Transition Path Sampling (2002) · doi:10.1002/0471231509.ch1
[10] Leitão, J. C.; Lopes, J. M. V. P.; Altmann, E. G., Phys. Rev. E, 90, 052916 (2014) · doi:10.1103/PhysRevE.90.052916
[11] Leitão, J. C.; Lopes, J. M. V. P.; Altmann, E. G., Phys. Rev. Lett., 110, 220601 (2013) · doi:10.1103/PhysRevLett.110.220601
[13] Grünwald, M.; Dellago, C.; Geissler, P. L., J. Chem. Phys., 129, 194101 (2008) · doi:10.1063/1.2978000
[14] To compute τ, the map has to be iterated τ times and thus the number of map iterations needed to reach \(τ_{max}\) is of the order of \(\sum_{\tau = 1}^{\tau_{\max}} C(\tau) \tau \).
[15] Kuptsov, P. V.; Parlitz, U., J. Nonlinear Sci., 22, 727 (2012) · Zbl 1301.37065 · doi:10.1007/s00332-012-9126-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.