×

Modified defect relations of the Gauss map and the total curvature of a complete minimal surface. (English) Zbl 1380.53015

Summary: In this article, we propose some conditions on the modified defect relations of the Gauss map of a complete minimal surface \(M\) to show that \(M\) has finite total curvature.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
32H30 Value distribution theory in higher dimensions

References:

[1] Ahlfors, L. V., An extension of Schwarz’s lemma, Trans. Am. Math. Soc., 43, 359-364 (1938) · JFM 64.0315.04
[2] Fujimoto, H., Value distribution of the Gauss maps of complete minimal surfaces in \(R^m\), J. Math. Soc. Jpn., 35, 4, 663-681 (1983) · Zbl 0527.53004
[3] Fujimoto, H., On the number of exceptional values of the Gauss maps of minimal surfaces, J. Math. Soc. Jpn., 40, 235-247 (1988) · Zbl 0629.53011
[4] Fujimoto, H., Modified defect relations for the Gauss map of minimal surfaces, J. Differ. Geom., 29, 245-262 (1989) · Zbl 0676.53005
[5] Fujimoto, H., Modified defect relations for the Gauss map of minimal surfaces II, J. Differ. Geom., 31, 365-385 (1990) · Zbl 0719.53005
[6] Fujimoto, H., Value Distribution Theory of the Gauss map of Minimal Surfaces in \(R^m\), Aspect of Math., vol. E21 (1993), Vieweg: Vieweg Wiesbaden · Zbl 1107.32004
[7] Ha, P. H., Non-integrated defect relations for the Gauss map of a complete minimal surface with finite total curvature in \(R^m\), Bull. Math. Soc. Sci. Math. Roum. (2017), in press
[8] Ha, P. H.; Phuong, L. B.; Thoan, P. D., Ramification of the Gauss map and the total curvature of a complete minimal surface, Topol. Appl., 199, 32-48 (2016) · Zbl 1332.53014
[9] Ha, P. H.; Trao, N. V., Non-integrated defect relations for the Gauss map of complete minimal surfaces with finite total curvature, J. Math. Anal. Appl., 430, 76-84 (2015) · Zbl 1318.53009
[10] Huber, A., On subhamornic functions and differential geometry in large, Comment. Math. Helv., 32, 13-72 (1961) · Zbl 0080.15001
[11] Jin, L.; Ru, M., Algebraic curves and the Gauss map of algebraic minimal surfaces, Differ. Geom. Appl., 25, 701-712 (2007) · Zbl 1149.53008
[12] Fang, Y., On the Gauss map of complete minimal surfaces with finite total curvature, Indiana Univ. Math. J., 42, 1389-1411 (1993) · Zbl 0794.53006
[13] Kawakami, Y.; Kobayashi, R.; Miyaoka, R., The Gauss map of pseudo-algebraic minimal surfaces, Forum Math., 20, 1055-1069 (2008) · Zbl 1167.53010
[14] Mo, X., Value distribution of the Gauss map and the total curvature of complete minimal surface in \(R^m\), Pac. J. Math., 163, 159-174 (1994) · Zbl 0801.53007
[15] Mo, X.; Osserman, R., On the Gauss map and total curvature of complete minimal surfaces and an extension of Fujimoto’s theorem, J. Differ. Geom., 31, 343-355 (1990) · Zbl 0666.53003
[16] Osserman, R., On complete minimal surfaces, Arch. Ration. Mech. Anal., 13, 392-404 (1963) · Zbl 0127.38003
[17] Osserman, R., Global properties of minimal surfaces in \(E^3\) and \(E^n\), Ann. Math., 80, 340-364 (1964) · Zbl 0134.38502
[18] Osserman, R., A Survey of Minimal Surfaces (1986), Dover: Dover New York · Zbl 0209.52901
[19] Ru, M., On the Gauss map of minimal surfaces with finite total curvature, Bull. Aust. Math. Soc., 44, 225-232 (1991) · Zbl 0725.53010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.