×

On the complete integrability of the periodic quantum Toda lattice. (English) Zbl 1379.37105

Summary: We prove that the periodic quantum Toda lattice corresponding to any extended Dynkin diagram is completely integrable. This has been conjectured and proved in all classical cases and \(E_{6}\) by R. Goodman and N. R. Wallach [Commun. Math. Phys. 83, 355–386 (1982; Zbl 0503.22013); Commun. Math. Phys. 105, 473–509 (1986; Zbl 0616.22010)] at the beginning of the 1980s. As a direct application, in the context of quantum cohomology of affine flag manifolds, results that were known to hold only for some particular Lie types can now be extended to all types.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
81Q80 Special quantum systems, such as solvable systems
17B20 Simple, semisimple, reductive (super)algebras
17B35 Universal enveloping (super)algebras
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras

References:

[1] D. Applebaum, Probability on Compact Lie Groups, Probab. Theory Stoch. Model. 70, Springer, New York, 2014.; Applebaum, D., Probability on Compact Lie Groups (2014)
[2] A. J. Bordner, R. Sasaki and K. Takasaki, Calogero-Moser models II: Symmetries and foldings, Progr. Theor. Phys. 101 (1999), 487-518.; Bordner, A. J.; Sasaki, R.; Takasaki, K., Calogero-Moser models II: Symmetries and foldings, Progr. Theor. Phys., 101, 487-518 (1999)
[3] P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2 194, American Mathematical Society, Providence (1999), 9-25.; Etingof, P., Whittaker functions on quantum groups and q-deformed Toda operators, Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, 9-25 (1999) · Zbl 1157.33327
[4] E. Feigin and B. Frenkel, Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Internat. J. Modern Phys. A 7 (1992), 197-215.; Feigin, E.; Frenkel, B., Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Internat. J. Modern Phys. A, 7, 197-215 (1992) · Zbl 0925.17022
[5] E. Frenkel, Langlands Correspondence for Loop Groups, Cambridge Stud. Adv. Math. 103, Cambridge University Press, Cambridge, 2007.; Frenkel, E., Langlands Correspondence for Loop Groups (2007) · Zbl 1133.22009
[6] R. Goodman and N. R. Wallach, Classical and quantum-mechanical systems of Toda lattice type I, Comm. Math. Phys. 83 (1982), 355-386.; Goodman, R.; Wallach, N. R., Classical and quantum-mechanical systems of Toda lattice type I, Comm. Math. Phys., 83, 355-386 (1982) · Zbl 0503.22013
[7] R. Goodman and N. R. Wallach, Classical and quantum-mechanical systems of Toda lattice type III, Comm. Math. Phys. 105 (1986), 473-509.; Goodman, R.; Wallach, N. R., Classical and quantum-mechanical systems of Toda lattice type III, Comm. Math. Phys., 105, 473-509 (1986) · Zbl 0616.22010
[8] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Grad. Stud. Math. 34, American Mathematical Society, Providence, 2001.; Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces (2001) · Zbl 0177.50601
[9] V. Kac, Infinite Dimensional Lie Algebras, 2nd ed., Cambridge University Press, Cambridge, 1985.; Kac, V., Infinite Dimensional Lie Algebras (1985) · Zbl 0574.17010
[10] A.-L. Mare, Quantum cohomology of the infinite dimensional generalized flag manifolds, Adv. Math. 185 (2004), 347-369.; Mare, A.-L., Quantum cohomology of the infinite dimensional generalized flag manifolds, Adv. Math., 185, 347-369 (2004) · Zbl 1137.53348
[11] A.-L. Mare and L. C. Mihalcea, An affine quantum cohomology ring for flag manifolds and the periodic Toda lattice, preprint (2015).; Mare, A.-L.; Mihalcea, L. C., An affine quantum cohomology ring for flag manifolds and the periodic Toda lattice (2015) · Zbl 1443.14059
[12] M. L. Mehta, Basic sets of invariant polynomials for finite reflection groups, Comm. Algebra 16 (1988), 1083-1098.; Mehta, M. L., Basic sets of invariant polynomials for finite reflection groups, Comm. Algebra, 16, 1083-1098 (1988) · Zbl 0642.20041
[13] K.-H. Neeb, Borel-Weil theory for loop groups, Infinite Dimensional Kähler Manifolds, DMV Semin. 31, Birkhäuser, Basel (2001), 179-229.; Neeb, K.-H., Borel-Weil theory for loop groups, Infinite Dimensional Kähler Manifolds, 179-229 (2001) · Zbl 0994.22014
[14] A. Pressley and G. Segal, Loop Groups, Oxford Math. Monogr., Clarendon Press, Oxford, 1986.; Pressley, A.; Segal, G., Loop Groups (1986) · Zbl 0618.22011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.