×

On Sylow permutable subgroups of finite groups. (English) Zbl 1380.20022

A subgroup \(H\) of a group \(G\) is called Sylow permutable, or \(S\)-permutable, in \(G\) if \(H\) permutes with all Sylow \(p\)-subgroups of \(G\) for all primes \(p\). A group \(G\) is said to be a PST-group if Sylow permutability is a transitive relation in \(G\). The authors of this interesting article proved that a group \(G\) which is factorised by a normal subgroup and a subnormal PST-subgroup of odd order is supersoluble (Theorem 1). The second main result is the following (Theorem 2) yields that the normal closure \(S^G\) of a subnormal PST-subgroup \(S\) of odd order of a group \(G\) is supersoluble, and the subgroup generated by subnormal PST-subgroups of \(G\) of odd order is supersoluble as well.

MSC:

20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D40 Products of subgroups of abstract finite groups
20D35 Subnormal subgroups of abstract finite groups
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
Full Text: DOI

References:

[1] A. Ballester-Bolinches and J. C. Beidleman, Some special classes of finite soluble PST-groups, Ric. Mat. 64 (2015), no. 2, 325-330.; Ballester-Bolinches, A.; Beidleman, J. C., Some special classes of finite soluble PST-groups, Ric. Mat., 64, 2, 325-330 (2015) · Zbl 1334.20010
[2] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, Products of Finite Groups, De Gruyter Exp. Math. 53, Walter de Gruyter, Berlin, 2010.; Ballester-Bolinches, A.; Esteban-Romero, R.; Asaad, M., Products of Finite Groups (2010) · Zbl 1206.20019
[3] J. C. Beidleman and H. Heineken, On the Fitting core of a formation, Bull. Aust. Math. Soc. 68 (2003), no. 1, 107-112.; Beidleman, J. C.; Heineken, H., On the Fitting core of a formation, Bull. Aust. Math. Soc., 68, 1, 107-112 (2003) · Zbl 1056.20011
[4] Z. M. Chen, On a theorem of Srinivasan, Southwest Normal Univ. Nat. Sci. 12 (1987), no. 1, 1-4.; Chen, Z. M., On a theorem of Srinivasan, Southwest Normal Univ. Nat. Sci., 12, 1, 1-4 (1987) · Zbl 0732.20008
[5] J. Cossey, Finite groups generated by subnormal T-subgroups, Glasg. Math. J. 37 (1995), no. 3, 363-371.; Cossey, J., Finite groups generated by subnormal T-subgroups, Glasg. Math. J., 37, 3, 363-371 (1995) · Zbl 0840.20018
[6] K. Doerk and T. Hawkes, Finite Soluble Groups, De Gruyter Exp. Math. 4, Walter de Gruyter, Berlin, 1992.; Doerk, K.; Hawkes, T., Finite Soluble Groups (1992) · Zbl 0753.20001
[7] I. M. Isaacs, Semipermutable π-subgroups, Arch. Math. (Basel) 102 (2014), 1-6.; Isaacs, I. M., Semipermutable π-subgroups, Arch. Math. (Basel), 102, 1-6 (2014) · Zbl 1297.20018
[8] O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962), 205-221.; Kegel, O. H., Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78, 205-221 (1962) · Zbl 0102.26802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.