×

Kato classes for Lévy processes. (English) Zbl 1379.60053

Authors’ abstract: We prove that the definitions of the Kato class through the semigroup and through the resolvent of the Lévy process in \(\mathbb {R}^{d}\) coincide if and only if 0 is not regular for \(\{0\}\). If 0 is regular for \(\{0\}\) then we describe both classes in detail. We also give an analytic reformulation of these results by means of the characteristic (Lévy-Khintchine) exponent of the process. The result applies to the time-dependent (non-autonomous) Kato class. As one of the consequences we obtain a simultaneous time-space smallness condition equivalent to the Kato class condition given by the semigroup.

MSC:

60G51 Processes with independent increments; Lévy processes
60J45 Probabilistic potential theory
47A55 Perturbation theory of linear operators
35J10 Schrödinger operator, Schrödinger equation

References:

[1] Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Comm. Pure Appl. Math. 35(2), 209-273 (1982) · Zbl 0459.60069 · doi:10.1002/cpa.3160350206
[2] Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Springer-Verlag, New York-Heidelberg (1975). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 87 · Zbl 0308.31001 · doi:10.1007/978-3-642-66128-0
[3] Bertoin, J.: Lévy Processes, volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996) · Zbl 0861.60003
[4] Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory Pure and Applied Mathematics, vol. 29. Academic Press, New York-London (1968) · Zbl 0169.49204
[5] Bogdan, K., Butko, Y., Szczypkowski, K.: Majorization, 4G Theorem and Schrödinger perturbations. J. Evol. Equ. 16(2), 241-260 (2016) · Zbl 1370.47046 · doi:10.1007/s00028-015-0301-7
[6] Bogdan, K., Grzywny, T., Ryznar, M.: Density and tails of unimodal convolution semigroups. J. Funct. Anal. 266(6), 3543-3571 (2014) · Zbl 1290.60002 · doi:10.1016/j.jfa.2014.01.007
[7] Bogdan, K., Hansen, W., Jakubowski, T.: Time-dependent Schrödinger perturbations of transition densities. Studia Math. 189(3), 235-254 (2008) · Zbl 1161.47009 · doi:10.4064/sm189-3-3
[8] Bogdan, K., Jakubowski, T., Sydor, S.: Estimates of perturbation series for kernels. J. Evol Equ. 12(4), 973-984 (2012) · Zbl 1279.47026 · doi:10.1007/s00028-012-0164-0
[9] Bogdan, K., Szczypkowski, K.: Gaussian estimates for Schrödinger perturbations. Studia Math. 221(2), 151-173 (2014) · Zbl 1303.47057 · doi:10.4064/sm221-2-4
[10] Bretagnolle, J.: Résultats de Kesten sur les processus à accroissements indépendants. In: Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969-1970) Lecture Notes in Math. , vol. 191, pp. 21-36. Springer, Berlin (1971) · Zbl 1302.60109
[11] Carmona, R., Masters, W.C., Simon, B.: Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91(1), 117-142 (1990) · Zbl 0716.35006 · doi:10.1016/0022-1236(90)90049-Q
[12] Chen, Z.-Q., Kim, P., Kumagai, T.: On heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces. Acta Math. Sin. (Engl. Ser.) 25(7), 1067-1086 (2009) · Zbl 1171.60373 · doi:10.1007/s10114-009-8576-7
[13] Chung, K.L., Zhao, Z.X.: From Brownian motion to Schrödinger’s equation, volume 312 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1995) · Zbl 0819.60068
[14] Demuth, M., van Casteren, J.A.: Stochastic Spectral Theory for Selfadjoint Feller Operators. A Functional Integration Approach. Probability and Its Applications. Birkhäuser Verlag, Basel (2000) · Zbl 0980.60005
[15] Grzywny, T.: On Harnack inequality and Hölder regularity for isotropic unimodal Lévy processes. Potential Anal. 41(1), 1-29 (2014) · Zbl 1302.60109 · doi:10.1007/s11118-013-9360-y
[16] Henry, B.I., Langlands, T.A.M., Straka, P.: Fractional fokker-planck equations for subdiffusion with space- and time-dependent forces. Phys. Rev. Lett. 105, 170602 (2010) · doi:10.1103/PhysRevLett.105.170602
[17] Hiroshima, F., Ichinose, T., Lörinczi, J.: Path integral representation for Schrödinger operators with Bernstein functions of the Laplacian. Rev. Math Phys. 24 (6), 1250013,40 (2012) · Zbl 1408.81020 · doi:10.1142/S0129055X12500134
[18] Kaleta, K., Lörinczi, J.: Pointwise eigenfunction estimates and intrinsic ultracontractivity-type properties of Feynman-Kac semigroups for a class of Lévy processes. Ann. Probab. 43(3), 1350-1398 (2015) · Zbl 1321.47098 · doi:10.1214/13-AOP897
[19] Kaleta, K., Sztonyk, P.: Small time sharp bounds for kernels of convolution semigroups. to appear in Journal d’Analyse Mathḿatique · Zbl 1381.60108
[20] Kato, T.: Perturbation Theory for Linear Operators. Die Grundlehren Der Mathematischen Wissenschaften Band, vol. 132. Springer-Verlag New York, Inc., New York (1966) · Zbl 0148.12601
[21] Kato, T.: Schrödinger operators with singular potentials. In: Proceedings of the I,nternational Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), vol. 13, pp. 135-148 (1973) · Zbl 0246.35025
[22] Kim, P., Mimica, A.: Harnack inequalities for subordinate Brownian motions. Electron. J. Probab. 17(37), 23 (2012) · Zbl 1248.60092
[23] Knopova, V., Kulik, A.: Intrinsic small time estimates for distribution densities of Lévy processes. Random Oper. Stoch. Equ. 21(4), 321-344 (2013) · Zbl 1291.60095 · doi:10.1515/rose-2013-0015
[24] Kuwae, K., Takahashi, M.: Kato class functions of Markov processes under ultracontractivity. In: Potential Theory in Matsue, volume 44 of Adv. Stud. Pure Math., pp. 193-202. Math. Soc., Japan, Tokyo (2006) · Zbl 1116.31005
[25] Kuwae, K., Takahashi, M.: Kato class measures of symmetric M,arkov processes under heat kernel estimates. J. Funct Anal. 250(1), 86-113 (2007) · Zbl 1132.47033 · doi:10.1016/j.jfa.2006.10.010
[26] Liskevich, V., Semenov, Y.: Two-sided estimates of the heat kernel of the S,chrödinger operator. Bull London Math. Soc. 30(6), 596-602 (1998) · Zbl 0930.35046 · doi:10.1112/S0024609398004664
[27] Lörinczi, J., Hiroshima, F., Betz, V.: Feynman-Kac-Type Theorems and Gibbs Measures on Path Space. With Applications to Rigorous Quantum Field Theory, volume 34 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (2011) · Zbl 1236.81003
[28] Port, S.C., Stone, C.J.: Infinitely divisible processes and their potential theory. Ann. Inst. Fourier (Grenoble) 21(2), 157-275 (1971) · Zbl 0195.47601
[29] Sato, K.-I.: Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). Translated from The 1990 Japanese original, Revised by the author. · Zbl 0860.35044
[30] Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions. Theory and Applications, volume 37 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, second edition (2012) · Zbl 1257.33001
[31] Schnaubelt, R., Voigt, J.: The non-autonomous Kato class. Arch. Math. (Basel) 72(6), 454-460 (1999) · Zbl 0939.35081 · doi:10.1007/s000130050355
[32] Simon, B.: Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.) 7(3), 447-526 (1982) · Zbl 0524.35002 · doi:10.1090/S0273-0979-1982-15041-8
[33] Štatland, E.S.: On local properties of processes with independent increments. Teor. Verojatnost. i Primenen. 10, 344-350 (1965) · Zbl 0146.38002
[34] Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures. Potential Anal. 5(2), 109-138 (1996) · Zbl 0861.31004 · doi:10.1007/BF00396775
[35] Watanabe, T.: The isoperimetric inequality for isotropic unimodal Lévy processes. Z. Wahrsch. Verw. Gebiete 63(4), 487-499 (1983) · Zbl 0516.60079 · doi:10.1007/BF00533722
[36] Zhang, Q.: On a parabolic equation with a singular lower order term. Trans. Amer. Math. Soc. 348(7), 2811-2844 (1996) · Zbl 0860.35044 · doi:10.1090/S0002-9947-96-01675-3
[37] Zhang, Q.S.: On a parabolic equation with a singular lower order term. II. The Gaussian bounds. Indiana Univ. Math. J. 46(3), 989-1020 (1997) · Zbl 0909.35054 · doi:10.1512/iumj.1997.46.1112
[38] Zhao, Z.: A probabilistic principle and generalized Schrödinger perturbation. J. Funct. Anal. 101(1), 162-176 (1991) · Zbl 0748.60069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.