×

Local-global principle for reduced norms over function fields of \(p\)-adic curves. (English) Zbl 1469.11061

Let \(K\) be a non-archimedean local field and \(F\) be a function field in one variable over \(K\) with \(\Omega_F\) being the set of all discrete valuations of \(F\) and with \(F_\nu\) denoting the completion of \(F\) at \(\nu\in\Omega_F\). Let \(G\) be a semisimple simply connected linear algebraic group over \(F\). One says that the Hasse principle holds for principal homogeneous spaces \(X\) under \(G\) over \(F\) with respect to \(\Omega_F\) if \(X(F_\nu)\ne\emptyset\) for all \(\nu\in \Omega_F\) implies \(X(F)\ne\emptyset\). This is known to hold for various types of classical groups in the case of \(K\) being a \(p\)-adic field due to work by Y. Hu [J. Ramanujan Math. Soc. 29, No. 2, 155–199 (2014; Zbl 1320.11033)] and R. Preeti [J. Algebra 385, 294–313 (2013; Zbl 1292.11056)]. It is also known for \(G=\mathrm{SL}_1(D)\) for a central simple \(F\)-algebra \(D\) of square free index, as follows from the injectivity of the Rost invariant due to A. S. Merkurjev and A. A. Suslin [Math. USSR, Izv. 36, No. 2, 349–367 (1991); translation from Izv. Akad. Nauk SSSR Ser. Mat. 54, No. 2, 339–356 (1990; Zbl 0711.19003)] and Kato’s Hasse principle for \(H^3(F,\mu_n^{\otimes 2})\) [K. Kato, J. Reine Angew. Math. 366, 142–183 (1986; Zbl 0576.12012)].
In the present paper, the authors establish the Hasse principle for \(G=\mathrm{SL}_1(D)\) for any central simple algebra \(D\) over \(F\) of period coprime to \(p\). More precisely, their first main theorem states that if \(K\) is a local field and \(F\) is a function field of transcendence degree one over \(K\), and if \(D\) is a central simple algebra over \(F\) of period coprime to the residue characteristic of \(K\), then \(\lambda\in F^*\) is a reduced norm from \(D\) whenever \([D]\cdot (\lambda)=0\in H^3(F,\mu_n^{\otimes 2})\). By invoking Kato’s result, they then conclude that if \(\lambda\in F^*\) is a reduced norm from \(D\otimes F_\nu\) for all \(\nu\in \Omega_F\), then \(\lambda\) is a reduced norm from \(D\). They point out that it in fact suffices to restrict to so-called divisorial discrete valuations. The authors also prove an analogous local version of their first main theorem, showing the same statement but now with \(F\) being a complete discretely valued field whose residue field \(\kappa\) is a local or global field and where the period of \(D\) is coprime to the characteristic of \(\kappa\). In the case where \(\kappa\) is a global field, they additionally assume the period of \(D\) to be odd or \(\kappa\) to have no real places.
The proofs make use of the patching techniques developed by D. Harbater, J. Hartmann and D. Krashen [Invent. Math. 178, No. 2, 231–263 (2009; Zbl 1259.12003); Comment. Math. Helv. 89, No. 1, 215–253 (2014; Zbl 1332.11046)], as well as some results from local and global class field theory.

MSC:

11E72 Galois cohomology of linear algebraic groups
11G20 Curves over finite and local fields
11S25 Galois cohomology
14H05 Algebraic functions and function fields in algebraic geometry
16K20 Finite-dimensional division rings

References:

[1] A.Albert, Structure of algebras, American Mathematical Society Colloquium Publications, vol. 24 (American Mathematical Society, Providence, RI, 1961), revised printing.
[2] M.Artin, Algebraic approximation of structures over complete local rings, Publ. Math. Inst. Hautes Études Sci.36 (1969), 23-58.10.1007/BF02684596 · Zbl 0181.48802 · doi:10.1007/BF02684596
[3] J. W. S.Cassels and A.Fröhlich, Algebraic number theory (Thomson Book Company, Washington, DC, 1967). · Zbl 0153.07403
[4] J.-L.Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, in K-theory and algebraic geometry: connections with quadratic forms and division algebras, AMS Summer Research Institute, Santa Barbara 1992, Proceedings of Symposia in Pure Mathematics, vol. 58, Part I, eds W.Jacob and A.Rosenberg (American Mathematical Society, Providence, RI, 1995), 1-64. · Zbl 0834.14009
[5] J.-L.Colliot-Thélène, R.Parimala and V.Suresh, Patching and local global principles for homogeneous spaces over function fields of p-adic curves, Comment. Math. Helv.87 (2012), 1011-1033.10.4171/CMH/276 · Zbl 1332.11065
[6] B.Fein and M.Schacher, ℚ(t) and ℚ((t))-admissibility of groups of odd order, Proc. Amer. Math. Soc.123 (1995), 1639-1645. · Zbl 0974.12003
[7] M.Fried and M.Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol. 11, third edition (Springer, Berlin, 2008). · Zbl 1145.12001
[8] P.Gille and T.Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 101 (Cambridge University Press, Cambridge, 2006).10.1017/CBO9780511607219 · Zbl 1137.12001
[9] D.Harbater and J.Hartmann, Patching over fields, Israel J. Math.176 (2010), 61-107.10.1007/s11856-010-0021-1 · Zbl 1213.14052
[10] D.Harbater, J.Hartmann and D.Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math.178 (2009), 231-263.10.1007/s00222-009-0195-5 · Zbl 1259.12003
[11] D.Harbater, J.Hartmann and D.Krashen, Local-global principles for Galois cohomology, Comment. Math. Helv.89 (2014), 215-253.10.4171/CMH/317 · Zbl 1332.11046
[12] D.Harbater, J.Hartmann and D.Krashen, Local-global principles for torsors over arithmetic curves, Amer. J. Math.137 (2015), 1559-1612.10.1353/ajm.2015.0039 · Zbl 1348.11036
[13] D.Harbater, J.Hartmann and D.Krashen, Refinements to patching and applications to field invariants, Int. Math. Res. Not. IMRN2015 (2015), 10399-10450.10.1093/imrn/rnu278 · Zbl 1386.14101
[14] Y.Hu, Hasse principle for simply connected groups over function fields of surfaces, J. Ramanujan Math. Soc.29 (2014), 155-199. · Zbl 1320.11033
[15] Y.Hu, A cohomological Hasse principle over two-dimensional local rings, Int. Math. Res. Not. IMRN2017 (2017), 4369-4397. · Zbl 1405.11042
[16] B.Jacob and A.Wadsworth, Division algebras over Henselian fields, J. Algebra128 (1990), 126-179.10.1016/0021-8693(90)90047-R · Zbl 0692.16011
[17] K.Kato, A generalization of local class field theory by using K-groups, I. J. Fac. Sci. Univ. Tokyo Sect. IA Math.26 (1979), 303-376. · Zbl 0428.12013
[18] K.Kato, A Hasse principle for two-dimensional global fields, J. reine angew. Math.366 (1986), 142-181. · Zbl 0576.12012
[19] M.-A.Knus, A. S.Merkurjev, M.Rost and J.-P.Tignol, The book of involutions (American Mathematical Society, Providence, RI, 1998).10.1090/coll/044 · Zbl 0955.16001
[20] F.Lorenz, Algebra volume II: Fields with structure, algebras and advanced topics, University Text (Springer, New York, 2008). · Zbl 1130.12001
[21] A.Maurice and G.Oscar, The Brauer group of a commutative ring, Trans. Amer. Math. Soc.97 (1960), 367-409.10.1090/S0002-9947-1960-0121392-6 · Zbl 0100.26304
[22] A. S.Merkurjev and A. A.Suslin, The norm residue homomorphism of degree 3, Izv. Akad. Nauk SSSR Ser. Mat.54 (1990), 339-356; Transl. Math. USSR-Izv. 36 (1991), 349-367. · Zbl 0711.19003
[23] J. S.Milne, Étale cohomology (Princeton University Press, Princeton, NJ, 1980). · Zbl 0433.14012
[24] R.Parimala and V.Suresh, Period-index and u-invariant questions for function fields over complete discretely valued fields, Invent. Math.197 (2014), 215-235.10.1007/s00222-013-0483-y · Zbl 1356.11018
[25] R.Parimala and V.Suresh, On the u-invariant of function fields of curves over complete discretely valued fields, Adv. Math.280 (2015), 729-742.10.1016/j.aim.2015.03.020 · Zbl 1320.11105
[26] R.Preeti, Classification theorems for Hermitian forms, the Rost kernel and Hasse principle over fields with cd_2(k)⩽3, J. Algebra385 (2013), 294-313.10.1016/j.jalgebra.2013.02.038 · Zbl 1292.11056 · doi:10.1016/j.jalgebra.2013.02.038
[27] B. S.Reddy and V.Suresh, Admissibility of groups over function fields of p-adic curves, Adv. Math.237 (2013), 316-330.10.1016/j.aim.2012.12.017 · Zbl 1294.16011
[28] J.Riou, Classes de Chern, morphismes de Gysin, pureté absolue, in Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schemas quasi-excellents. Sém. à l’École Polytechnique 2006-2008, Astérisque, vol. 363-364, eds L.Illusie, Y.Laszlo and F.Orgogozo (Société Mathématique de France, Paris, 2014), 301-349. · Zbl 1320.14031
[29] D. J.Saltman, Division algebras over p-adic curves, J. Ramanujan Math. Soc.12 (1997), 25-47. · Zbl 0902.16021
[30] J.-P.Serre, Local fields (Springer, New York, 1979).10.1007/978-1-4757-5673-9 · Zbl 0423.12016 · doi:10.1007/978-1-4757-5673-9
[31] J.-P.Serre, Galois cohomology (Springer, New York, 1997).10.1007/978-3-642-59141-9 · Zbl 0902.12004 · doi:10.1007/978-3-642-59141-9
[32] J.-P.Serre, Cohomological invariants, Witt invariants and trace forms, in Cohomological invariants in Galois cohomology, University Lecture Series, vol. 28, eds S.Garibaldi, A.Merkurjev and J.-P.Serre (American Mathematical Society, Providence, RI, 2003). · Zbl 1159.12311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.