×

Arithmetic properties of Apéry-like numbers. (English) Zbl 1441.11033

The paper proves generalizations of three conjectures of Beukers about Apéry numbers \(A_1(n), A_2(n)\). More precisely, let (for fixed \(n\)) \(f(k) = \binom{n}{n-k}\) and \(g(k) = \binom{n+k}{k}\). Put \(P_1 = f^{2} \ast g^{2}\) and \(P_2 = f^2 \ast g\), with \(\ast\) being the Cauchy product. Put also \(C(n) = \binom{2n}{n}\) the \(n\)-th Catalan number. Then \(A_1(n) =P_1(n)-(1+C(n)^2)\) and \(A_2(n) = P_2(n) -(1+C(n))\).
Then the conjectures are:
(a) Given \(n\) written in base \(5\). One has \(5^a \mid A_1(n)\) where \(a\) is the number of “digits” equal to \(1\) or \(3\).
(b) Similar to (a), but in base \(11\) with \(a\) equal the number of digits equal \(5\).
(c) Similar to (a), but in base \(p \equiv 3 \pmod{4}\) with \(a\) equal the number of digits equal to \((p-1)/2\), and with \(A_1(n)\) changed in \(A_2(n)\).

MSC:

11B50 Sequences (mod \(m\))
11B65 Binomial coefficients; factorials; \(q\)-identities
05A10 Factorials, binomial coefficients, combinatorial functions

Software:

OEIS

References:

[1] G.Almkvist and W.Zudilin, Differential equations, mirror maps and zeta values, in Mirror symmetry, Vol. V, AMS/IP Studies in Advanced Mathematics, vol. 38 (American Mathematical Society, Providence, RI, 2006), 481-515. · Zbl 1118.14043
[2] R.Apéry, Irrationalité de 𝜁(2) et 𝜁(3), Astérisque61 (1979), 11-13. · Zbl 0401.10049
[3] F.Beukers, Some congruences for the Apéry numbers, J. Number Theory21 (1985), 141-155.10.1016/0022-314X(85)90047-2 · Zbl 0571.10008 · doi:10.1016/0022-314X(85)90047-2
[4] F.Beukers, Congruence properties of coefficients of solutions of Picard-Fuchs equations, Groupe de travail d’analyse ultramétrique14 (1986-1987), 1-6; Exposé 11.
[5] F.Beukers, Another congruence for the Apéry numbers, J. Number Theory25 (1987), 201-210.10.1016/0022-314X(87)90025-4 · Zbl 0614.10011 · doi:10.1016/0022-314X(87)90025-4
[6] F.Beukers and J.Stienstra, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces, Math. Ann.271 (1985), 269-304.10.1007/BF01455990 · Zbl 0539.14006
[7] J. M.Borwein, D.Nuyens, A.Straub and J.Wan, Some arithmetic properties of short random walk integrals, Ramanujan J.26 (2011), 109-132.10.1007/s11139-011-9325-y · Zbl 1233.60024
[8] N. J.Calkin, Factors of sums of powers of binomial coefficients, Acta Arith.86 (1998), 17-26.10.4064/aa-86-1-17-26 · Zbl 0917.11011 · doi:10.4064/aa-86-1-17-26
[9] E.Catalan, Sur un développement de l’intégrale elliptique de première espèce et sur une suite de nombres entiers, Mém. Acad. R. Sci. Lett. Beaux-Arts Belg.46 (1885), 1-24.
[10] S.Chowla, J.Cowles and M.Cowles, Congruence properties of Apéry numbers, J. Number Theory12 (1980), 188-190.10.1016/0022-314X(80)90051-7 · Zbl 0428.10008
[11] J. H.Conway and R. K.Guy, The book of numbers (Springer, New York, 1996), 106.10.1007/978-1-4612-4072-3 · Zbl 0866.00001
[12] M. J.Coster, Congruence properties of coefficients of certain algebraic power series, Compositio Math.68 (1988), 41-57. · Zbl 0661.10019
[13] E.Delaygue, A criterion for the integrality of the Taylor coefficients of mirror maps in several variables, Adv. Math.234 (2013), 414-452.10.1016/j.aim.2012.09.028 · Zbl 1297.11071 · doi:10.1016/j.aim.2012.09.028
[14] E.Delaygue, T.Rivoal and J.Roques, On Dwork’s p-adic formal congruences theorem and hypergeometric mirror maps, Mem. Amer. Math. Soc.246 (2017), 100 pp. · Zbl 1382.11085
[15] E.Deutsch and B. E.Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory117 (2006), 191-215.10.1016/j.jnt.2005.06.005 · Zbl 1163.11310
[16] J.Franel, On a question of Laisant, L’intermédiaire des Mathématiciens1 (1894), 45-47.
[17] J.Franel, On a question of J. Franel, L’intermédiaire des Mathématiciens2 (1895), 33-35.
[18] I.Gessel, Some congruences for Apéry numbers, J. Number Theory14 (1982), 362-368.10.1016/0022-314X(82)90071-3 · Zbl 0482.10003 · doi:10.1016/0022-314X(82)90071-3
[19] E.Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. reine angew. Math.44 (1852), 93-146.10.1515/crll.1852.44.93 · ERAM 044.1198cj · doi:10.1515/crll.1852.44.93
[20] E.Landau, Sur les conditions de divisibilité d’un produit de factorielles par un autre, Nouv. Ann. Math. (3)19 (1900), 344-362. · JFM 31.0183.05
[21] E.Lucas, Sur les congruences des nombres eulériens et les coefficients différentiels des fonctions trigonométriques suivant un module premier, Bull. Soc. Math. France6 (1878), 49-54.10.24033/bsmf.127 · JFM 10.0139.04 · doi:10.24033/bsmf.127
[22] A.Mellit and M.Vlasenko, Dwork’s congruences for the constant terms of powers of a Laurent polynomial, Int. J. Number Theory12 (2016), 313-321.10.1142/S1793042116500184 · Zbl 1408.11114
[23] Y.Mimura, Congruence properties of Apéry numbers, J. Number Theory16 (1983), 138-146.10.1016/0022-314X(83)90038-0 · Zbl 0504.10007 · doi:10.1016/0022-314X(83)90038-0
[24] The On-line encyclopedia of integer sequences, published electronically at http://oeis.org (2013). · Zbl 1274.11001
[25] L. B.Richmond and J.Shallit, Counting abelian squares, Electron. J. Combin.16 (2009), Research paper 72, 9 pp. · Zbl 1191.68479
[26] K.Samol and D.van Straten, Dwork congruences and reflexive polytopes, Ann. Math. Québec39 (2015), 185-203.10.1007/s40316-015-0031-9 · Zbl 1388.11051
[27] D.Zagier, Integral solutions of Apéry-like recurrence equations, in Groups and symmetries, CRM Proceedings and Lecture Notes, vol. 47 (American Mathematical Society, Providence, RI, 2009), 349-366.10.1090/crmp/047/22 · Zbl 1244.11042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.