×

On the consistency strength of level by level inequivalence. (English) Zbl 1417.03259

Summary: We show that the theories “ZFC \(+\) There is a supercompact cardinal” and “ZFC \(+\) There is a supercompact cardinal \(+\) Level by level inequivalence between strong compactness and supercompactness holds” are equiconsistent.

MSC:

03E35 Consistency and independence results
03E55 Large cardinals
Full Text: DOI

References:

[1] Apter, A.: Indestructible strong compactness and level by level inequivalence. Math. Log. Q. 59, 371-377 (2013) · Zbl 1291.03093 · doi:10.1002/malq.201200067
[2] Apter, A.: Level by level inequivalence beyond measurability. Arch. Math. Log. 50, 707-712 (2011) · Zbl 1250.03090 · doi:10.1007/s00153-011-0243-x
[3] Apter, A.: Level by level inequivalence, strong compactness, and GCH. Bull. Pol. Acad. Sci. Math. 60, 201-209 (2012) · Zbl 1258.03073 · doi:10.4064/ba60-3-1
[4] Apter, A.: On level by level equivalence and inequivalence between strong compactness and supercompactness. Fundam. Math. 171, 77-92 (2002) · Zbl 0988.03074 · doi:10.4064/fm171-1-5
[5] Apter, A.: Tallness and level by level equivalence and inequivalence. Math. Log. Q. 56, 4-12 (2010) · Zbl 1184.03050 · doi:10.1002/malq.200810039
[6] Apter, A., Gitman, V., Hamkins, J.D.: Inner models with large cardinal features usually obtained by forcing. Arch. Math. Log. 51, 257-283 (2012) · Zbl 1250.03104 · doi:10.1007/s00153-011-0264-5
[7] Apter, A., Hamkins, J.D.: Exactly controlling the non-supercompact strongly compact cardinals. J. Symb. Log. 68, 669-688 (2003) · Zbl 1056.03030 · doi:10.2178/jsl/1052669070
[8] Apter, A., Shelah, S.: On the strong equality between supercompactness and strong compactness. Trans. Am. Math. Soc. 349, 103-128 (1997) · Zbl 0864.03036 · doi:10.1090/S0002-9947-97-01531-6
[9] Cummings, J.: A model in which GCH holds at successors but fails at limits. Trans. Am. Math. Soc. 329, 1-39 (1992) · Zbl 0758.03022 · doi:10.1090/S0002-9947-1992-1041044-9
[10] Di Prisco, C., Henle, J.: On the compactness of \[\aleph_1\] ℵ1 and \[\aleph_2\] ℵ2. J. Symb. Log. 43, 394-401 (1978) · Zbl 0394.03047 · doi:10.2307/2273517
[11] Foreman, M.: More saturated ideals. Cabal seminar 79-81. Lecture Notes in Mathematics 1019, pp. 1-27. Springer, Berlin (1983) · Zbl 1250.03090
[12] Hamkins, J.D.: Gap forcing. Isr. J. Math. 125, 237-252 (2001) · Zbl 1010.03042 · doi:10.1007/BF02773382
[13] Hamkins, J.D.: Gap forcing: generalizing the Lévy-Solovay theorem. Bull. Symb. Log. 5, 264-272 (1999) · Zbl 0933.03067 · doi:10.2307/421092
[14] Kanamori, A.: The Higher Infinite. Springer, Berlin (2009, 2003, 1994) · Zbl 0813.03034
[15] Lévy, A., Solovay, R.: Measurable cardinals and the continuum hypothesis. Isr. J. Math. 5, 234-248 (1967) · Zbl 0289.02044 · doi:10.1007/BF02771612
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.