×

On the stability of the Rayleigh-Ritz method for eigenvalues. (English) Zbl 1378.65175

This article deals with the ratio \(\hat{\lambda}_k/\lambda_k\), where \(\hat{\lambda}_k\) (resp. \(\lambda_k\)) is the \(k\)th numerical eigenvalue using the Rayleigh-Ritz methods (resp. the \(k\)th exact eigenvalue of Laplace operator). It is shown that in the context of classical finite elements, the maximal ratio blows up with the polynomial degree. In the context of B-splines of maximum smoothness, it is proved that the ratios are uniformly bounded with respect to the degree except for a few instable numerical eigenvalues which are related to the presence of essential boundary conditions. These phenomena are linked to the inverse inequalities in the respective approximation spaces.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P15 Estimates of eigenvalues in context of PDEs
Full Text: DOI

References:

[1] Birkhoff, G., De Boor, C., Swartz, B.K., Wendroff, B.: Rayleigh-Ritz approximation by piecewise cubic polynomials. SIAM J. Numer. Anal. 3(2), 188-203 (1966) · Zbl 0143.38002 · doi:10.1137/0703015
[2] Babuška, I., Osborn, J.E.: Eigenvalue problems. In: Finite Element Methods (Part 1), Volume 2 of Handbook of Numerical Analysis, pp. 641-787. Elsevier (1991) · Zbl 1329.65265
[3] Brenner, S.C., Scott, R.L.: The Mathematical Theory of Finite Element Methods, vol. 15, 3rd edn. Springer, New York (2008) · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[4] Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, London (2009) · Zbl 1378.65009 · doi:10.1002/9780470749081
[5] Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257-5296 (2006) · Zbl 1119.74024 · doi:10.1016/j.cma.2005.09.027
[6] Dedè, L., Jäggli, C., Quarteroni, A.: Isogeometric numerical dispersion analysis for two-dimensional elastic wave propagation. Comput. Methods Appl. Mech. Eng. 284, 320-348 (2015) · Zbl 1423.74094 · doi:10.1016/j.cma.2014.09.013
[7] Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135-4195 (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[8] Hughes, T.J.R., Evans, J.A., Reali, A.: Finite element and nurbs approximations of eigenvalue, boundary-value, and initial-value problems. Comput. Methods Appl. Mech. Eng. 272, 290-320 (2014) · Zbl 1296.65148 · doi:10.1016/j.cma.2013.11.012
[9] Hughes, T.J.R., Reali, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of \[p\] p-method finite elements with \[k\] k-method NURBS. Comput. Methods Appl. Mech. Eng. 197(49-50), 4104-4124 (2008) · Zbl 1194.74114 · doi:10.1016/j.cma.2008.04.006
[10] Peterseim, D., Schedensack, M.: Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput. (2017). doi:10.1007/s10915-017-0394-y · Zbl 1378.65169
[11] Schwab, \[C.: p\] p- and \[hp\] hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998) · Zbl 0910.73003
[12] Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc., Englewood Cliffs (1973) · Zbl 0278.65116
[13] Takacs, S., Takacs, T.: Approximation error estimates and inverse inequalities for B-splines of maximum smoothness. Math. Models Methods Appl. Sci. 26, 1411 (2016). doi:10.1142/S0218202516500342 · Zbl 1339.41012
[14] Weyl, H.: Über die asymptotische Verteilung der Eigenwerte. Nachrichten von der Gesellschaft für Wissenschaften zu Göttingen, Mathematisch - Physikalische Klasse 1911(2), 110-117 (1911) · JFM 43.0435.04
[15] Zhang, Z.: How many numerical eigenvalues can we trust? J. Sci. Comput. 65(2), 455-466 (2015) · Zbl 1329.65265 · doi:10.1007/s10915-014-9971-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.