×

Non-linear plank problems and polynomial inequalities. (English) Zbl 1391.46058

Given polynomials \(P_1,\dots,P_n\) of degree \(k_1,\dots, k_n\), respectively, on a complex Banach space \(E\), C. Benítez et al. [Math. Proc. Camb. Philos. Soc. 124, No. 3, 395–408 (1998; Zbl 0937.46044)] showed that \[ \|P_1\|\cdots\|P_n\|\leq {(k_1+\cdots +k_n)^{k_1+\cdots +k_n}\over k_1^{k_1} \cdots k_n^{k_n}}\cdots \|P_1\dots P_n\|, \] with this inequality being sharp on \(\ell_1^n\). When \(E\) is a Hilbert space, D. Pinasco [Trans. Am. Math. Soc. 364, No. 8, 3993–4010 (2012; Zbl 1283.30004)] showed that the constant \({(k_1+\cdots +k_n)^ {k_1+\cdots +k_n}\over k_1^{k_1}\cdots k_n^{k_n}}\) may be replaced with \(\sqrt{{(k_1+\cdots +k_n)^{k_1+\cdots +k_n}\over k_1^{k_1}\cdots k_n^{k_n}}}\). In this paper, the authors show that, if \(E\) is a \(d\)-dimensional Banach space, then \[ \|P_1\|\cdots\|P_n\|\leq {(C_K4ed)^{k_1+\cdots +k_n}\over 2^{{n\over C_K}}}\cdots \|P_1\dots P_n\| \] where \(C_K\) is \(1\) if \(E\) is real and \(2\) if \(E\) is complex. Moreover, when \(P_1,\dots, P_n\) are homogeneous polynomials on a Hilbert space, \(\displaystyle{\left(C_K4ed\right)^{k_1+\cdots +k_n}\over 2^{{n\over C_K}}}\) may be replaced with \(\displaystyle{\left({e^{H_dC_K}\over 4}\right)^{k_1+\cdots +k_n}\over 2^{{n\over C_K}}}\) where \(H_d=\sum_{n=1}^d{1\over k}\). For large values of \(n\), this gives an improvement of the above inequality of Benítez et al. [loc. cit.]. Using this result, the authors show that, if \(P_1,\dots,P_n\) are polynomials of degree \(k_1,\dots , k_n\), respectively, on a complex Banach space and \(a_1,\dots, a_n\) are strictly positive real numbers with \(\sum_{k=1}^na_k<{1\over n^{n-1}}\), then there is \(z_0\) in the unit ball of \(E\) with \(|P_i(z_0)|\geq a_i^{k_i}\) for \(1\leq i\leq n\). In the case where \(E\) is \(L_p(\mu)\) or \(S_p\) for \(1\leq p\leq 2\) and \(P_1,\dots,P_n\) are homogeneous, the condition \(\sum_{k=1}^na_k<{1\over n^{n-1}}\) can be replaced with the condition \(\sum_{k=1}^na_k^p<{1\over n^{n-1}}\).

MSC:

46G25 (Spaces of) multilinear mappings, polynomials
46T99 Nonlinear functional analysis

References:

[1] Arias-de-Reyna, J.: Gaussian variables, polynomials and permanents. Linear Algebra Appl. 285, 107-114 (1998) · Zbl 0934.15036 · doi:10.1016/S0024-3795(98)10125-8
[2] Ball, K.M.: The plank problem for symmetric bodies. Invent. Math. 104, 535-543 (1991) · Zbl 0702.52003 · doi:10.1007/BF01245089
[3] Ball, K.M.: The complex plank problem. Bull. London Math. Soc. 33, 433-442 (2001) · Zbl 1030.46008 · doi:10.1017/S002460930100813X
[4] Bang, T.: A solution of the plank problem. Proc. Am. Math. Soc. 2, 990-993 (1951) · Zbl 0044.37802
[5] Beauzamy, B., Bombieri, E., Enflo, P., Montgomery, H.L.: Products of polynomials in many variables. J. Number Theory 36(2), 219-245 (1990) · Zbl 0729.30004 · doi:10.1016/0022-314X(90)90075-3
[6] Benítez, C., Sarantopoulos, Y., Tonge, A.: Lower bounds for norms of products of polynomials. Math. Proc. Camb. Philos. Soc. 124(3), 395-408 (1998) · Zbl 0937.46044 · doi:10.1017/S030500419800259X
[7] Boyd, C., Ryan, R.: The norm of the product of polynomials in infinite dimensions. Proc. Edinb. Math. Soc. (Ser. 2) 49(1), 17-28 (2006) · Zbl 1117.46028 · doi:10.1017/S0013091504000756
[8] Brudnyi, Yu., Ganzburg, M.: On an extremal problem for polynomials of n variables. Math. USSR-Izv. 37, 344-355 (1973) · Zbl 0283.26012
[9] Carando, D., Pinasco, D., Rodríguez, J.T.: Lower bounds for norms of products of polynomials on \[L_p\] Lp spaces. Studia Math. 214, 157-166 (2013) · Zbl 1271.32002 · doi:10.4064/sm214-2-4
[10] Kavadjiklis, A., Kim, S.G.: Plank type problems for polynomials on Banach spaces. J. Math. Anal. Appl. 396(2), 528-535 (2012) · Zbl 1258.46019 · doi:10.1016/j.jmaa.2012.06.029
[11] Malicet, D., Nourdin, I., Peccati, G., Poly, G.: Squared chaotic random variables: new moment inequalities with applications. J. Funct. Anal. 270(2), 649-670 (2016) · Zbl 1355.60013 · doi:10.1016/j.jfa.2015.10.013
[12] Pappas, A., Révész, S.G.: Linear polarization constants of Hilbert spaces. J. Math. Anal. Appl. 300(1), 129-146 (2004) · Zbl 1081.46021 · doi:10.1016/j.jmaa.2004.06.031
[13] Pinasco, D.: Lower bounds for norms of products of polynomials via Bombieri inequality. Trans. Am. Math. Soc. 364, 3993-4010 (2012) · Zbl 1283.30004 · doi:10.1090/S0002-9947-2012-05403-1
[14] Révész, S.G., Sarantopoulos, Y.: Plank problems, polarization and Chebyshev constants. Satellite conference on infinite dimensional function theory. J. Korean Math. Soc. 41(1), 157-174 (2004) · Zbl 1047.46036 · doi:10.4134/JKMS.2004.41.1.157
[15] Rodríguez, J.T.: On the norm of products of polynomials on ultraproduct of Banach spaces. J. Math. Anal. Appl. 421(2), 805-816 (2015) · Zbl 1346.46042 · doi:10.1016/j.jmaa.2015.02.054
[16] Rodríguez, J.T.: Desigualdades polinomiales en espacios de Banach. Ph.D .Thesis, Universidad de Buenos Aires (2016) · Zbl 1271.32002
[17] Tarski, A.: O stopniu równowa \[\dot{{\rm o}}\] o˙ności wieloka̧tów. (English: On the degree of equivalence of polygons). Młody Matematyk 1, 37-44 (1931)
[18] Tarski, A.: Uwagi o stopniu równowa \[\dot{{\rm o}}\] o˙ności wieloka̧tów. (English: Remarks on the degree of equivalence of polygons). Parametr 2, 310-314 (1932)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.