×

Well posedness of ODE’s and continuity equations with nonsmooth vector fields, and applications. (English) Zbl 1380.37039

The paper gives an overview of the theory of flows associated to nonsmooth vector fields. It describes the main developments since the basic paper by R. J. DiPerna and P. L. Lions [Invent. Math. 98, No. 3, 511–547 (1989; Zbl 0696.34049)]. Proofs and technical details can be found in a couple of other sources, e.g., in [B. Dacorogna (ed.) and P. Marcellini (ed.), Calculus of variations and nonlinear partial differential equations. Lectures given at the C. I.M. E. summer school, Cetraro, Italy, June 27–July 2, 2005. With a historical overview by Elvira Mascolo. Berlin: Springer (2008; Zbl 1126.35004)] or in [L. Ambrosio and G. Crippa, Proc. R. Soc. Edinb., Sect. A, Math. 144, No. 6, 1191–1244 (2014; Zbl 1358.37046)].
The focus lies on the situation for which the given vector field, denoted by \(\mathbf b\), is not regular and even defined only up to \(\mathcal{L}^1 \times \mathcal{L}^d\) negligible sets. A regular flow is a solution of the initial value problem that is absolutely continuous and satisfies an additional inequality between certain measures related to a non-concentration property of trajectories. The existence of a unique regular Lagrangian flow is obtained under a regularity and a global growth condition for \(\mathbf b\). This solution is also stable with respect to smooth perturbations of \(\mathbf b\). Under weaker assumptions a regular generalized flow involving a kind of weak formulation with probability measures exists. A crucial step in the proof of the latter result is to show the existence of a distributional solution of the continuity equation \(w_t+\text{div} (\mathbf bw)=0\) using a mollifying technique. Applications are given to the Keyfitz-Kranzer system and the semi-geostrophic system. In two further sections the question of differentiability and a local theory with applications to the Vlasov-Poisson system are considered. Finally, the extension of the theory to metric measure spaces is discussed.

MSC:

37C10 Dynamics induced by flows and semiflows
35R05 PDEs with low regular coefficients and/or low regular data
35F05 Linear first-order PDEs
35A15 Variational methods applied to PDEs
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
34A36 Discontinuous ordinary differential equations
34G20 Nonlinear differential equations in abstract spaces
34A05 Explicit solutions, first integrals of ordinary differential equations
Full Text: DOI

References:

[1] Aizenman, M.: On vector fields as generators of flows: a counterexample to Nelson’s conjecture. Ann. Math. 107, 287-296 (1978) · Zbl 0394.28012 · doi:10.2307/1971145
[2] Alberti, G.: Rank-one properties for derivatives of functions with bounded variation. Proc. R. Soc. Edinb. Sect. A 123, 239-274 (1993) · Zbl 0791.26008 · doi:10.1017/S030821050002566X
[3] Alberti, G., Ambrosio, L.: A geometric approach to monotone functions in \[{\mathbb{R}}^nRn\]. Math. Z. 230, 259-316 (1999) · Zbl 0934.49025 · doi:10.1007/PL00004691
[4] Alberti, G., Bianchini, S., Crippa, G.: A uniqueness result for the continuity equation in two dimensions. J. Eur. Math. Soc. 16, 201-234 (2014) · Zbl 1286.35006 · doi:10.4171/JEMS/431
[5] Alberti, G., Bianchini, S., Crippa, G.: Structure of level sets and Sard-type properties of Lipschitz maps: results and counterexamples. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 12, 863-902 (2013) · Zbl 1295.26016
[6] Alberti, G., Bianchini, S., Crippa, G.: On the \[L^p\] Lp differentiability of certain classes of functions. Revista Matemática Iberoamericana 30, 349-367 (2014) · Zbl 1296.26042 · doi:10.4171/RMI/782
[7] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs (2000) · Zbl 0957.49001
[8] Ambrosio, L.: Transport equation and Cauchy problem for \[BV\] BV vector fields. Invent. Math. 158, 227-260 (2004) · Zbl 1075.35087 · doi:10.1007/s00222-004-0367-2
[9] Ambrosio, L., De Lellis, C.: Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions. Int. Math. Res. Not. 41, 2205-2220 (2003) · Zbl 1061.35048 · doi:10.1155/S1073792803131327
[10] Ambrosio, L.: Transport equation and Cauchy problem for non-smooth vector fields. In: Dacorogna, B., Marcellini, P. (eds.) Lecture Notes in Mathematics “Calculus of Variations and Non-Linear Partial Differential Equations” (CIME Series, Cetraro, 2005), vol. 1927, pp. 2-41 (2008) · Zbl 1169.60010
[11] Ambrosio, L., Crippa, G.: Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields. Lect. Notes UMI 5, 3-54 (2008) · Zbl 1155.35313
[12] Ambrosio, L., Bouchut, F., De Lellis, C.: Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions. Commun. PDE 29, 1635-1651 (2004) · Zbl 1072.35116 · doi:10.1081/PDE-200040210
[13] Ambrosio, L., Crippa, G., Maniglia, S.: Traces and fine properties of a \[BD\] BD class of vector fields and applications. Ann. Sci. Toulouse XIV(4), 527-561 (2005) · Zbl 1091.35007 · doi:10.5802/afst.1102
[14] Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the Wasserstein space of probability measures. Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005, second edition in 2008 · Zbl 1090.35002
[15] Ambrosio, L., Friesecke, G., Giannoulis, J.: Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions. Commun. PDE 35, 1490-1515 (2009) · Zbl 1203.35192 · doi:10.1080/03605301003657835
[16] Ambrosio, L., Figalli, A., Friesecke, G., Giannoulis, J., Paul, T.: Semiclassical limit of quantum dynamics with rough potentials and well posedness of transport equations with measure initial data. Commun. Pure Appl. Math. 64, 1199-1242 (2011) · Zbl 1231.35186 · doi:10.1002/cpa.20371
[17] Ambrosio, L., Lecumberry, M., Maniglia, S.: Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow. Rendiconti del Seminario Fisico Matematico di Padova 114, 29-50 (2005) · Zbl 1370.26014
[18] Ambrosio, L., Malý, J.: Very weak notions of differentiability. Proc. R. Soc. Edinb. 137 A, 447-455 (2007) · Zbl 1167.26001 · doi:10.1017/S0308210505001344
[19] Ambrosio, L., De Lellis, C., Malý, J.: On the chain rule for the divergence of \[BV\] BV like vector fields: applications, partial results, open problems. In: Perspectives in Nonlinear Partial Differential Equations: in honour of Haim Brezis, Contemporary Mathematics, vol. 446, pp. 31-67. AMS (2007) · Zbl 1200.49043
[20] Ambrosio, L., Figalli, A.: On flows associated to Sobolev vector fields in Wiener spaces: an approach à la DiPerna-Lions. J. Funct. Anal. 256, 179-214 (2009) · Zbl 1156.60036 · doi:10.1016/j.jfa.2008.05.007
[21] Ambrosio, L., Figalli, A.: Almost everywhere well-posedness of continuity equations with measure initial data. C. R. Acad. Sci. Paris 348, 249-252 (2010) · Zbl 1195.35202 · doi:10.1016/j.crma.2010.01.018
[22] Ambrosio, L., Colombo, M., De Philippis, G., Figalli, A.: Existence of Eulerian solutions to the semigeostrophic equations in physical space: the two-dimensional periodic case. Commun. Partial Differ. Equ. 37, 2209-2227 (2012) · Zbl 1258.35164 · doi:10.1080/03605302.2012.669443
[23] Ambrosio, L., Colombo, M., De Philippis, G., Figalli, A.: A global existence result for the semigeostrophic equations in three dimensional convex domains. Preprint, 2012, to appear on Discrete and Continuous Dynamical Systems · Zbl 1287.35064
[24] Ambrosio, L., Crippa, G.: Continuity equations and ODE flows with non-smooth velocity. Proc. R. Soc. Edinb. Sect. A 144, 1191-1244 (2014) · Zbl 1358.37046 · doi:10.1017/S0308210513000085
[25] Ambrosio, L., Trevisan, D.: Well posedness of Lagrangian flows and continuity equations in metric measure spaces. Anal. PDE 7, 1179-1234 (2014) · Zbl 1357.49058 · doi:10.2140/apde.2014.7.1179
[26] Ambrosio, L., Colombo, M., Figalli, A.: Existence and uniqueness of maximal regular flows for non-smooth vector fields. Arch. Ration. Mech. Anal. 218, 1043-1081 (2015) · Zbl 1348.34039 · doi:10.1007/s00205-015-0875-9
[27] Ambrosio, L., Colombo, M., Figalli, A.: On the Lagrangian structure of transport equations: the Vlasov-Poisson system. ArXiv Preprint (2015) · Zbl 1403.35085
[28] Ambrosio, L., Trevisan, D.: Lecture notes on the DiPerna-Lions theory in abstract measure spaces. ArXiv preprint, to appear in the Ann. Fac. Sci. Toulouse (2016) · Zbl 1402.35003
[29] Ambrosio, L., Stra, F., Trevisan, D.: Weak and strong convergence of derivations and stability of flows with respect to MGH convergence. J. Funct. Anal. 272, 1182-1229 (2017) · Zbl 1355.53033 · doi:10.1016/j.jfa.2016.10.030
[30] Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der mathematischen Wissenschaften, vol. 348. Springer, Berlin (2014) · Zbl 1376.60002 · doi:10.1007/978-3-319-00227-9
[31] Balder, E.J.: New fundamentals of Young measure convergence. In: CRC Res. Notes in Math., vol. 411 (2001) · Zbl 0964.49011
[32] Benamou, J.-D., Brenier, Y.: Weak solutions for the semigeostrophic equation formulated as a couples Monge-Ampere transport problem. SIAM J. Appl. Math. 58, 1450-1461 (1998) · Zbl 0915.35024 · doi:10.1137/S0036139995294111
[33] Bianchini, S., Gusev, N.A.: Steady nearly incompressible vector fields in two-dimension: chain rule and renormalization. Arch. Ration. Mech. Anal. 222, 451-505 (2016) · Zbl 1359.35145 · doi:10.1007/s00205-016-1006-y
[34] Bianchini, S., Bonicatto, P., Gusev, N.A.: Renormalization for autonomous nearly incompressible \[BV\] BV vector fields in two dimensions. SIAM J. Math. Anal. 48, 1-33 (2016) · Zbl 1343.35060 · doi:10.1137/15M1007380
[35] Bianchini, S., Bonicatto, P.: A uniqueness result for the decomposition of vector fields in \[{\mathbb{R}}^d\] Rd. Preprint (2017) · Zbl 1435.35121
[36] Bourgain, J.: Invariant measures for NLS in infinite volume. Commun. Math. Phys. 210, 605-620 (2000) · Zbl 0957.35117 · doi:10.1007/s002200050792
[37] Bogachev, V., Wolf, E.M.: Absolutely continuous flows generated by Sobolev class vector fields in finite and infinite dimensions. J. Funct. Anal. 167, 1-68 (1999) · Zbl 0956.60079 · doi:10.1006/jfan.1999.3430
[38] Bohun, A., Bouchut, F., Crippa, G.: Lagrangian flows for vector fields with anisotropic regularity. Ann. Inst. H. Poincaré 33, 1409-1429 (2016) · Zbl 1353.35118 · doi:10.1016/j.anihpc.2015.05.005
[39] Bohun, A., Bouchut, F., Crippa, G.: Lagrangian solutions to the Vlasov-Poisson system with \[L^1\] L1 density. J. Differ. Equ. 260, 3576-3597 (2016) · Zbl 1333.35287 · doi:10.1016/j.jde.2015.10.041
[40] Bouchut, F., Crippa, G.: Uniqueness, renormalization, and smooth approximations for linear transport equations. SIAM J. Math. Anal. 38, 1316-1328 (2006) · Zbl 1122.35104 · doi:10.1137/06065249X
[41] Bouchut, F., Crippa, G.: Equations de transport à coefficient dont le gradient est donné par une intégrale singulière. (French) [Transport equations with a coefficient whose gradient is given by a singular integral]. Séminaire: Équations aux Dérivées Partielles. 2007-2008, Exp. No. I, 15 pp., Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau (2009) · Zbl 1185.35034
[42] Bouchut, F., Crippa, G.: Lagrangian flows for vector fields with gradient given by a singular integral. J. Hyperbolic Differ. Equ. 10, 235-282 (2013) · Zbl 1275.35076 · doi:10.1142/S0219891613500100
[43] Bouchut, F., James, F.: One dimensional transport equation with discontinuous coefficients. Nonlinear Anal. 32, 891-933 (1998) · Zbl 0989.35130 · doi:10.1016/S0362-546X(97)00536-1
[44] Bouchut, F.: Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Ration. Mech. Anal. 157, 75-90 (2001) · Zbl 0979.35032 · doi:10.1007/PL00004237
[45] Bouchut, F., James, F., Mancini, S.: Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficients. Annali Scuola Normale Superiore 4, 1-25 (2005) · Zbl 1170.35363
[46] Brenier, Y.: The least action principle and the related concept of generalized flows for incompressible perfect fluids. J. Am. Math. Soc. 2, 225-255 (1989) · Zbl 0697.76030 · doi:10.1090/S0894-0347-1989-0969419-8
[47] Brenier, Y.: The dual least action problem for an ideal, incompressible fluid. Arch. Ration. Mech. Anal. 122, 323-351 (1993) · Zbl 0797.76006 · doi:10.1007/BF00375139
[48] Brenier, Y.: Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Commun. Pure Appl. Math. 52, 411-452 (1999) · Zbl 0910.35098 · doi:10.1002/(SICI)1097-0312(199904)52:4<411::AID-CPA1>3.0.CO;2-3
[49] Bressan, A.: A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova 110, 97-102 (2003) · Zbl 1114.05002
[50] Bressan, A.: An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova 110, 103-117 (2003) · Zbl 1114.35123
[51] Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50) · Zbl 0252.47055
[52] Caffarelli, L.A.: Some regularity properties of solutions of Monge Ampère equation. Commun. Pure Appl. Math. 44, 965-969 (1991) · Zbl 0761.35028 · doi:10.1002/cpa.3160440809
[53] Caffarelli, L.A.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5, 99-104 (1992) · Zbl 0753.35031 · doi:10.1090/S0894-0347-1992-1124980-8
[54] Caffarelli, L.A.: Boundary regularity of maps with convex potentials. Ann. Math. 144, 453-496 (1996) · Zbl 0916.35016 · doi:10.2307/2118564
[55] Capuzzo Dolcetta, I., Perthame, B.: On some analogy between different approaches to first order PDE’s with nonsmooth coefficients. Adv. Math. Sci Appl. 6, 689-703 (1996) · Zbl 0865.35032
[56] Cellina, A.: On uniqueness almost everywhere for monotonic differential inclusions. Nonlinear Anal. TMA 25, 899-903 (1995) · Zbl 0837.34023 · doi:10.1016/0362-546X(95)00086-B
[57] Cellina, A., Vornicescu, M.: On gradient flows. J. Differ. Equ. 145, 489-501 (1998) · Zbl 0927.37007 · doi:10.1006/jdeq.1997.3376
[58] Cullen, M.: A Mathematical Theory of Large-Scale Atmosphere/Ocean Flow. Imperial College Press, London (2006) · doi:10.1142/p375
[59] Champagnat, N., Jabin, P.-E.: Well posedness in any dimension for Hamiltonian flows with non BV force terms. Commun. Partial Differ. Equ. 35, 786-816 (2010) · Zbl 1210.34010 · doi:10.1080/03605301003646705
[60] Colombini, F., Lerner, N.: Uniqueness of continuous solutions for \[BV\] BV vector fields. Duke Math. J. 111, 357-384 (2002) · Zbl 1017.35029 · doi:10.1215/S0012-7094-01-11126-5
[61] Colombini, F., Lerner, N.: Uniqueness of \[L^\infty\] L∞ solutions for a class of conormal \[BV\] BV vector fields. Contemp. Math. 368, 133-156 (2005) · Zbl 1064.35033 · doi:10.1090/conm/368/06776
[62] Colombini, F., Luo, T., Rauch, J.: Uniqueness and no nuniqueness for non smooth divergence-free transport. Seminaire: Équations aux Dérivées Partielles, 20022003, Exp. No. XXII, 21 pp., Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau (2003) · Zbl 1195.35202
[63] Crippa, G.: Ordinary Differential Equations and Singular Integrals. HYP2012 Proceedings, in press (2012) · Zbl 1156.60036
[64] Crippa, G., De Lellis, C.: Oscillatory solutions to transport equations. Indiana Univ. Math. J. 55, 1-13 (2006) · Zbl 1098.35101 · doi:10.1512/iumj.2006.55.2793
[65] Crippa, G., De Lellis, C.: Estimates for transport equations and regularity of the DiPerna-Lions flow. J. Reine Angew. Math. 616, 15-46 (2008) · Zbl 1160.34004
[66] Cullen, M.: On the accuracy of the semi-geostrophic approximation. Q. J. R. Metereol. Soc. 126, 1099-1115 (2000) · Zbl 0949.65061 · doi:10.1002/qj.49712656413
[67] Cullen, M., Gangbo, W.: A variational approach for the 2-dimensional semi-geostrophic shallow water equations. Arch. Ration. Mech. Anal. 156, 241-273 (2001) · Zbl 0985.76008 · doi:10.1007/s002050000124
[68] Cullen, M., Feldman, M.: Lagrangian solutions of semigeostrophic equations in physical space. J. Math. Anal. 37, 1371-1395 (2006) · Zbl 1097.35004
[69] Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000) · Zbl 0940.35002 · doi:10.1007/978-3-662-22019-1
[70] De Lellis, C.: Blow-up of the \[BV\] BV norm in the multidimensional Keyfitz and Kranzer system. Duke Math. J. 127, 313-339 (2004) · Zbl 1074.35073 · doi:10.1215/S0012-7094-04-12724-1
[71] DePauw, N.: Non unicité des solutions bornées pour un champ de vecteurs \[BV\] BV en dehors d’un hyperplan. C.R. Math. Sci. Acad. Paris 337, 249-252 (2003) · Zbl 1024.35029 · doi:10.1016/S1631-073X(03)00330-3
[72] De Philippis, G., Figalli, A.: \[W^{2,1}\] W2,1 regularity for solutions to the Monge-Ampére equation. Invent. Math. 192, 55-69 (2013) · Zbl 1286.35107 · doi:10.1007/s00222-012-0405-4
[73] De Philippis, G., Figalli, A., Savin, O.: A note on \[W^{2,1+\epsilon }\] W2,1+ϵ interior regularity for solutions to the Monge-Ampére equation. Math. Ann. 357, 11-22 (2013) · Zbl 1280.35153 · doi:10.1007/s00208-012-0895-9
[74] DiPerna, R.J.: Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88, 223-270 (1985) · Zbl 0616.35055 · doi:10.1007/BF00752112
[75] DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511-547 (1989) · Zbl 0696.34049 · doi:10.1007/BF01393835
[76] Evans, L.C., Gariepy, R.F.: Lecture Notes on Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[77] Federer, H.: Geometric Measure Theory. Springer, Berlin (1969) · Zbl 0176.00801
[78] Figalli, A.: Existence and uniqueness of martingale solutions for SDE with rough or degenerate coefficients. J. Funct. Anal. 254, 109-153 (2008) · Zbl 1169.60010 · doi:10.1016/j.jfa.2007.09.020
[79] Flandoli, F.: Random perturbation of PDEs and fluid dynamic models. Lectures from the 40th Probability Summer School held in Saint-Flour, 2010. Lecture Notes in Mathematics, 2015. cole d’t de Probabilités de Saint-Flour · Zbl 0839.35139
[80] Gigli, N.: Nonsmooth differential geometry—an approach tailored for spaces with Ricci curvature bounded from below. ArXiv preprint arXiv:1407.0809. To appear on Mem. Am. Math. Soc · Zbl 1404.53056
[81] Hauray, M.: On Liouville transport equation with potential in \[BV_{{\rm loc}}\] BVloc. Commun. PDE 29, 207-217 (2004) · Zbl 1103.35003
[82] Hauray, M.: On two-dimensional Hamiltonian transport equations with \[L^p_{{\rm loc}}\] Llocp coefficients. Ann. IHP Nonlinear Anal. Non Linéaire 20, 625-644 (2003) · Zbl 1028.35148 · doi:10.1016/S0294-1449(02)00015-X
[83] Jabin, P.-E.: Differential equations with singular fields. J. Math. Pures Appl. 94, 597-621 (2010) · Zbl 1217.34015 · doi:10.1016/j.matpur.2010.07.001
[84] Keyfitz, B.L., Kranzer, H.C.: A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch. Ration. Mech. Anal. 72, 219-241 (1980) · Zbl 0434.73019 · doi:10.1007/BF00281590
[85] Le Bris, C., Lions, P.-L.: Renormalized solutions of some transport equations with partially \[W^{1,1}\] W1,1 velocities and applications. Annali di Matematica 183, 97-130 (2003) · Zbl 1170.35364 · doi:10.1007/s10231-003-0082-4
[86] Lerner, N.: Transport equations with partially BV velocities. Annali Scuola Normale Superiore 3, 681-703 (2004) · Zbl 1170.35362
[87] Lions, P.-L.: Sur les équations différentielles ordinaires et les équations de transport. C. R. Acad. Sci. Paris Sér. I(326), 833-838 (1998) · Zbl 0919.34028 · doi:10.1016/S0764-4442(98)80022-0
[88] Lions, P.-L.: Mathematical Topics in Fluid Mechanics, Vol. I: Incompressible Models. Oxford Lecture Series in Mathematics and Its Applications, vol. 3. Oxford University Press, Oxford (1996) · Zbl 0866.76002
[89] Lions, P.-L.: Mathematical Topics in Fluid Mechanics, Vol. II: Compressible Models. Oxford Lecture Series in Mathematics and Its Applications, vol. 10. Oxford University Press, Oxford (1998) · Zbl 0908.76004
[90] Maniglia, S.: Probabilistic representation and uniqueness results for measure-valued solutions of transport equations. J. Math. Pures Appl. 87, 601-626 (2007) · Zbl 1123.60048 · doi:10.1016/j.matpur.2007.04.001
[91] Panov, E.Y.: On strong precompactness of bounded sets of measure-valued solutions of a first order quasilinear equation. Math. Sb. 186, 729-740 (1995) · Zbl 0839.35139 · doi:10.1070/SM1995v186n05ABEH000039
[92] Petrova, G., Popov, B.: Linear transport equation with discontinuous coefficients. Commun. PDE 24, 1849-1873 (1999) · Zbl 0992.35104 · doi:10.1080/03605309908821484
[93] Poupaud, F., Rascle, M.: Measure solutions to the linear multidimensional transport equation with non-smooth coefficients. Commun. PDE 22, 337-358 (1997) · Zbl 0882.35026 · doi:10.1080/03605309708821265
[94] Schmidt, T.: \[W^{1,2+\epsilon }\] W1,2+ϵ estimates for solutions to the Monge-Ampére equation. Adv. Math. 240, 672-689 (2013) · Zbl 1290.35136 · doi:10.1016/j.aim.2012.07.034
[95] Smirnov, S.K.: Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents. St. Petersburg Math. J. 5, 841-867 (1994) · Zbl 0832.49024
[96] Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) · Zbl 0207.13501
[97] Trevisan, D.: Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. 21, 41 (2016) · Zbl 1336.60159 · doi:10.1214/16-EJP4453
[98] Trevisan, D.: Lagrangian flows driven by BV fields in Wiener spaces. Probab. Theory Relat. Fields 163, 123-147 (2015) · Zbl 1329.35109 · doi:10.1007/s00440-014-0589-1
[99] Urbas, J.I.E.: Global Hölder estimates for equations of Monge-Ampère type. Invent. Math. 91, 1-29 (1988) · Zbl 0674.35026 · doi:10.1007/BF01404910
[100] Urbas, J.I.E.: Regularity of generalized solutions of Monge-Ampère equations. Math. Z. 197, 365-393 (1988) · Zbl 0617.35017 · doi:10.1007/BF01418336
[101] Villani, C.: Topics in Mass Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2004)
[102] Villani, C.: Optimal Transport: Old and New. Vol. 338 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2009) · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
[103] Weaver, N.: Lipschitz algebras and derivations. II. Exterior differentiation. J. Funct. Anal. 178, 64-112 (2000) · Zbl 0979.46035 · doi:10.1006/jfan.2000.3637
[104] Young, L.C.: Lectures on the Calculus of Variations and Optimal Control Theory. Saunders, Philadelphia (1969) · Zbl 0177.37801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.