×

Holographic insulator/superconductor phase transition with Weyl corrections. (English) Zbl 1370.82146

Summary: We analytically investigate the phase transition between the holographic insulator and superconductor with Weyl corrections by using the variational method for the Sturm-Liouville eigenvalue problem. We find that similar to the curvature corrections, in the \(p\)-wave model, higher Weyl couplings make the insulator/superconductor phase transition harder to occur. However, in the \(s\)-wave case the Weyl corrections do not influence the critical chemical potential, which is in contrast to the effect caused by the curvature corrections. Moreover, we observe that the Weyl corrections will not affect the critical phenomena and the critical exponent of the system always takes the mean-field value in both models. Our analytic results are in good agreement with numerical findings.

MSC:

82D55 Statistical mechanics of superconductors
82B26 Phase transitions (general) in equilibrium statistical mechanics

References:

[1] Maldacena, J., Internat. J. Theoret. Phys., 38, 1113 (1999) · Zbl 0969.81047
[2] Gubser, S. S., Phys. Rev. D, 78, 065034 (2008)
[3] Hartnoll, S. A.; Herzog, C. P.; Horowitz, G. T., J. High Energy Phys., 0812, 015 (2008)
[4] Hartnoll, S. A.; Herzog, C. P.; Horowitz, G. T., Phys. Rev. Lett., 101, 031601 (2008) · Zbl 1404.82086
[5] Horowitz, G. T.
[6] Horowitz, G. T.; Myers, R. C., Phys. Rev. D, 59, 026005 (1999)
[7] Nishioka, T.; Ryu, S.; Takayanagi, T., J. High Energy Phys., 1003, 131 (2010)
[8] Wang, Y. Q.; Liu, Y. X.; Cai, R. G.; Takeuchi, S.; Zhang, H. Q., J. High Energy Phys., 1209, 058 (2012)
[9] Akhavan, A.; Alishahiha, M., Phys. Rev. D, 83, 086003 (2011)
[10] Cai, R. G.; Li, H. F.; Zhang, H. Q., Phys. Rev. D, 83, 126007 (2011)
[11] Pan, Q. Y.; Jing, J. L.; Wang, B., Phys. Rev. D, 84, 126020 (2011)
[12] Cai, R. G.; Li, L.; Zhang, H. Q.; Zhang, Y. L., Phys. Rev. D, 84, 126008 (2011)
[13] Pan, Q. Y.; Wang, B.; Papantonopoulos, E.; Oliveria, J.; Pavan, A. B., Phys. Rev. D, 81, 106007 (2010)
[14] Pan, Q. Y.; Jing, J. L.; Wang, B., J. High Energy Phys., 1111, 088 (2011)
[15] Cai, R. G.; Kim, S. P.; Wang, B., Phys. Rev. D, 76, 024011 (2007) · Zbl 1222.83093
[16] Wu, J. P.; Cao, Y.; Kuang, X. M.; Li, W. J., Phys. Lett. B, 697, 153 (2011)
[17] Gregory, R.; Kanno, S.; Soda, J., J. High Energy Phys., 0910, 010 (2009)
[18] Ma, D. Z.; Cao, Y.; Wu, J. P., Phys. Lett. B, 704, 604 (2011)
[19] Momeni, D.; Majd, N.; Myrzakulov, R., Europhys. Lett., 97, 61001 (2012)
[20] Momeni, D.; Setare, M. R., Mod. Phys. Lett. A, 26, 2889 (2011) · Zbl 1274.82098
[21] Ritz, A.; Ward, J., Phys. Rev. D, 79, 066003 (2009)
[22] Gelfand, I. M.; Fomin, S. V., (Silverman, R. A., Calculus of Variations (1963), Prentice-Hall, Inc.: Prentice-Hall, Inc. Englewood Cliff, New Jersey), (Revised English edition, translated) · Zbl 0127.05402
[23] Siopsis, G.; Therrien, J., J. High Energy Phys., 1005, 013 (2010)
[24] Chen, S. B.; Pan, Q. Y.; Jing, J. L.
[25] Kuang, X. M.; Li, W. J.; Ling, Y., Classical Quantum Gravity, 29, 085015 (2012) · Zbl 1241.83063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.