×

Minkowski’s question mark measure. (English) Zbl 1373.42030

Minkowski’s question mark function is here given as follows: write \(x\in [0,1]\) in its continued fraction representation \(x=[n_1,n_2,\ldots]\) and put \(N_j(x)=\sum_{i=1}^j\,n_i\), then \[ Q(x)=\sum_{j=1}^{\infty}\,(-1)^{j+1}2^{-N_j(x)+1}. \] The author is then interested in the singular-continuous measure \(\mu\), the Minkowski measure, with \(Q(x)\) as its distribution function \[ Q(x)=\int_0^x\,d\mu. \] In §1 (Introduction, 5 pages) the author gives an excellent historical overview of the study of this function and its properties. His research finds compelling evidence (the author’s words) of the precise characterization of \(\mu\) in terms of the conjectures.
Conjecture 1. Minkowski’s measure \(\mu\) is regular in the sense of Ullman-Saff-Totik,
Conjecture 2. Minkowski’s measure \(\mu\) belongs to the Nevai class \(N({1\over 4},{1\over 2})\).
In this Introduction the author introduces 4 connected conjectures and, assuming the validity of Conjecture 1, two propositions concerning the Gaussian weights and Christoffel functions of the orthogonal polynomials following from the weight \(\mu\) and their zeros.
The layout of the paper is as follows:
§1 Introduction: Minkowski’s Q function and its singular measure (\(5\) pages)
§2 Möbius iterated function systems (\(3\) pages)
§3 The Möobius IFS algorithm (\(6{1\over 2}\) pages)
§4 Regularity of Minkowski’s measure (\(1\) page)
§5 Zeros of Minkowski’s polynomials and their regularity (\(2\) pages)
§6 Discrepancy analysis (\(2\) pages)
§7 Gaussian integration of Minkowski’s measure (\(10{1\over 2}\) pages)
§8 The Nevai class of measures (\(4\) pages)
§9 Conclusions (\(1\over 2\) page)
References (\(63\) items)
The sections §3–§8 contain 18 interesting figures of numerical results.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
11A55 Continued fractions
11B57 Farey sequences; the sequences \(1^k, 2^k, \dots\)
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)

Software:

OPQ

References:

[1] Arnold et A. Avez, V. I., Problémes ergodiques de la mécanique classique (1967), Gauthier-Villars: Gauthier-Villars Paris · Zbl 0149.21704
[2] Akhiezer, N. I., The Classical Moment Problem (1965), Hafner: Hafner New York · Zbl 0135.33803
[3] Alkauskas, G., Integral Transforms of the Minkowski Question Mark Function (2008), University of Nottingham, (Ph.D thesis) · Zbl 1222.11114
[4] Alkauskas, G., The Minkowski question mark function: explicit series for the dyadic period function and moments, Math. Comp.. Math. Comp., Math. Comp., 80, 2445-2454 (2011), (Addenda and corrigenda) · Zbl 1267.11007
[5] Alkauskas, G., Semi-regular continued fractions and an exact formula for the moments of the Minkowski question mark function, Ramanujan J., 25, 359-367 (2011) · Zbl 1231.11008
[6] Andrievskii, V. V.; Blatt, H.-P., (Discrepancy of Signed Measures and Polynomial Approximation. Discrepancy of Signed Measures and Polynomial Approximation, Springer Monographs in Mathematics (2002), Springer-Verlag: Springer-Verlag New York) · Zbl 1013.42018
[7] Andrievskii, V. V.; Blatt, H.-P., On \(L_p\) -discrepancy of signed measures, Constr. Approx., 18, 19-36 (2002) · Zbl 1013.42018
[8] Andrievskii, V. V.; Blatt, H.-P.; Mhaskar, H. N., A local discrepancy theorem, Indag. Math. (N.S.), 12, 23-39 (2001) · Zbl 1013.42017
[9] Artuso, R.; Cvitanović, P.; Kenny, B. G., Phase transitions on strange irrational sets, Phys. Rev. A, 39, 268-281 (1989)
[10] Barnsley, M. F., Fractal functions and interpolation, Constr. Approx., 2, 303-329 (1986) · Zbl 0606.41005
[11] Barnsley, M. F., Fractals Everywhere (1988), Academic Press: Academic Press New York · Zbl 0691.58001
[12] Barnsley, M. F.; Demko, S. G., Iterated function systems and the global construction of fractals, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., A 399, 243-275 (1985) · Zbl 0588.28002
[13] Barnsley, M. F.; Vince, A., Fractal continuation, Constr. Approx., 38, 311-337 (2013) · Zbl 1279.28013
[14] Bessis, D.; Mantica, G., Construction of multifractal measures in dynamical systems from their invariance properties, Phys. Rev. Lett., 66, 2939-2942 (1991) · Zbl 1050.37500
[15] Bessis, D.; Mantica, G., Orthogonal polynomials associated to almost-periodic Schrödinger operators, J. Comput. App. Math., 48, 17-32 (1993) · Zbl 0793.35023
[16] Bonanno, C.; Isola, S., Orderings of the rationals and dynamical systems, Colloq. Math., 116, 165-189 (2009) · Zbl 1218.37008
[17] Degli Esposti, M.; Isola, S.; Knauf, A., Generalized Farey trees, transfer operators and phase transitions, Comm. Math. Phys., 275, 297-329 (2007) · Zbl 1131.37040
[18] Denjoy, A., Sur une fonction réelle de Minkowski, J. Math. Pures Appl., 17, 105-151 (1938) · JFM 64.0188.02
[19] Dresse, Z.; Van Assche, W., Orthogonal polynomials for Minkowski’s question mark function, J. Comput. Appl. Math., 284, 171-183 (2015) · Zbl 1312.42031
[20] Elhay, S.; Golub, G. H.; Kautsky, J., Jacobi matrices for sums of weight functions, BIT, 32, 143-166 (1992) · Zbl 0783.65037
[21] Erdös, P.; Turan, P., On the distribution of roots of polynomials, Ann. of Math., 51, 105-119 (1950) · Zbl 0036.01501
[22] Gautschi, W., A survey of Gauss-Christoffel quadrature formulae, (Butzer, P. L.; Fehér, F., E.B. Christoffel, the Influence of His Work in Mathematics and the Physical Sciences (1981), Birkhäuser: Birkhäuser Basel), 72-147 · Zbl 0479.65001
[23] Gautschi, W., An algorithmic implementation of the generalized Christoffel theorem, (Numerical Integration. Numerical Integration, Internat. Ser. Numer. Math., vol. 57 (1982), Birkhauser: Birkhauser Basel), 89-104 · Zbl 0518.65006
[24] Gautschi, W., Orthogonal polynomials: computation and approximation, (Hammerlin, G., Numerical Mathematics and Scientific Computation (2004), Oxford Science Publications, Oxford University Press: Oxford Science Publications, Oxford University Press New York) · Zbl 1130.42300
[25] Geronimo, J. S.; Van Assche, W., Orthogonal polynomials on several intervals via a polynomial mapping, Trans. Amer. Math. Soc., 308, 559-581 (1988) · Zbl 0652.42009
[26] Geronimus, Ya. L., On certain asymptotic properties of polynomials, Mat. Sbornik N. S., 23, 77-88 (1948) · Zbl 0056.10303
[27] Golub, G. H.; Welsch, J. H., Calculation of Gauss quadrature rules, Math. Comp., 23, 221-230 (1969) · Zbl 0179.21901
[28] Gragg, W. B.; Harrod, W. J., The numerically stable reconstruction of Jacobi matrices from spectral data, Numer. Math., 44, 317-335 (1984) · Zbl 0556.65027
[29] Gutzwiller, M. C., Bernoulli sequences and trajectories in the anisotropic Kepler problem, J. Math. Phys., 18, 806-823 (1977)
[30] Gutzwiller, M. C.; Mandelbrot, B. B., Invariant multifractal measures in chaotic Hamiltonian systems, and related structures, Phys. Rev. Lett., 60, 673-676 (1988)
[31] Hutchinson, J., Fractals and self-similarity, Indiana J. Math., 30, 713-747 (1981) · Zbl 0598.28011
[33] Kessebohmer, M.; Stratmann, B. O., A multifractal analysis for Stern-Brocot intervals, continued fractions and diophantine growth rates, J. Reine Angew. Math., 605, 133-163 (2007) · Zbl 1117.37003
[34] Kessebohmer, M.; Stratmann, B. O., Fractal analysis for sets of non- differentiability of Minkowski’s question mark function, J. Number Theory, 128, 2663-2686 (2008) · Zbl 1154.28001
[35] Kinney, J. R., Note on a singular function of Minkowski, Proc. Amer. Math. Soc., 11, 788-794 (1960) · Zbl 0109.28101
[36] Lubinsky, D. S., Singularly continuous measures in Nevai’s class, Proc. Amer. Math. Soc., 111, 413-420 (1991)
[37] Magnus, A., Recurrence coefficients for orthogonal polynomials on connected and nonconnected sets, (Padé Approximation and its Applications (Proc. Conf. Univ. Antwerp, Antwerp, 1979). Padé Approximation and its Applications (Proc. Conf. Univ. Antwerp, Antwerp, 1979), Lecture Notes in Math., vol. 765 (1979), Springer: Springer Berlin), 150-171 · Zbl 0431.41021
[38] Mantica, G., A Stieltjes technique for computing Jacobi matrices associated with singular measures, Constr. Approx., 12, 509-530 (1996) · Zbl 0878.42014
[39] Mantica, G., On computing Jacobi matrices associated with recurrent and Möbius iterated functions systems, J. Comput. Appl. Math., 115, 419-431 (2000) · Zbl 0977.65018
[40] Mantica, G., Direct and inverse computation of Jacobi matrices of infinite IFS, Numer. Math., 125, 705-731 (2013) · Zbl 1282.65050
[41] Mantica, G., Orthogonal polynomials of equilibrium measures supported on Cantor sets, J. Comput. App. Math., 290, 239-258 (2015) · Zbl 1320.42019
[42] Máté, A.; Nevai, P.; Totik, V., Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle, Constr. Approx., 1, 63-69 (1985) · Zbl 0582.42012
[43] Mendivil, F., A generalization of IFS with probabilities to infinitely many maps, Rocky Mountain J. Math., 28, 1043-1051 (1998) · Zbl 0995.37010
[47] Rakhmanov, E. A., The asymptotic behavior of the ratio of orthogonal polynomials. II, Mat. Sb. (N.S.), 118, 104-117 (1982) · Zbl 0509.30028
[48] Rugh, H. H., Intermittency and regularized Fredholm determinants, Invent. Math., 135, 1-24 (1999) · Zbl 0988.37027
[49] Saff, E. B., Orthogonal polynomials from a complex perspective, (Nevai, P., Orthogonal Polynomials (1990), Kluwer), 363-393 · Zbl 0697.42021
[50] Saff, E. B., Logarithmic potential theory with applications to approximation theory, Surv. Approx. Theory, 5, 165-200 (2010) · Zbl 1285.30020
[51] Salem, R., On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc., 53, 427-439 (1943) · Zbl 0060.13709
[52] Series, C., The modular surface and continued fractions, J. Lond. Math. Soc., 31, 69-80 (1985) · Zbl 0545.30001
[53] Shohat, J. A., On a certain formula of mechanical quadratures with non-equidistant ordinates, Trans. Amer. Math. Soc., 31, 448-463 (1929) · JFM 55.0307.04
[54] Stahl, H.; Totik, V., General Orthogonal Polynomials (2010), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1187.33008
[55] Szegö, G., Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23 (1939) · JFM 65.0278.03
[56] Totik, V., Orthogonal polynomials, Surv. Approx. Theory, 1, 70-125 (2005) · Zbl 1105.42017
[57] Totik, V., Metric properties of harmonic measures, Mem. Amer. Math. Soc., 184 (2006) · Zbl 1107.31001
[58] Van Assche, W., (Asymptotics for Orthogonal Polynomials. Asymptotics for Orthogonal Polynomials, Lect. Notes Math., vol. 1265 (1987), Springer: Springer Berlin) · Zbl 0617.42014
[59] Van Assche, W., Asymptotics for orthogonal polynomials and three-term recurrences, (Orthogonal Polynomials; Theory and Practice. Orthogonal Polynomials; Theory and Practice, NATO-ASI series C, vol. 294 (1990)), 435-462 · Zbl 0697.42023
[60] Van Assche, W.; Magnus, A. P., Sieved orthogonal polynomials and discrete measures with jumps dense in an interval, Proc. Amer. Math. Soc., 106, 163-173 (1989) · Zbl 0681.42016
[61] Viader, P.; Paradís, J.; Bibiloni, L., A new light on Minkowski’s ?(x) function, J. Number Theory, 73, 212-227 (1998) · Zbl 0928.11006
[63] Yakubovich, S., On some Rajchman measures and equivalent Salem’s problem, Commun. Math. Anal., 14, 28-41 (2013) · Zbl 1277.33004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.