×

Infinite and finite dimensional generalized Hilbert tensors. (English) Zbl 1370.15026

Summary: In this paper, we introduce the concept of an \(m\)-order \(n\)-dimensional generalized Hilbert tensor \(\mathcal{H}_n = (\mathcal{H}_{i_1 i_2 \cdots i_m})\), \[ \begin{aligned} \mathcal{H}_{i_1 i_2 \cdots i_m} = \frac{1}{i_1 + i_2 + \cdots i_m - m + a}, \\ a \in \mathbb{R} \setminus \mathbb{Z}^-;\;i_1, i_2, \cdots, i_m = 1, 2, \cdots, n, \end{aligned} \] and show that its \(H\)-spectral radius and its \(Z\)-spectral radius are smaller than or equal to \(M(a) n^{m - 1}\) and \(M(a) n^{\frac{m}{2}}\), respectively, here \(M(a)\) is a constant depending on \(a\). Moreover, both infinite and finite dimensional generalized Hilbert tensors are positive definite for \(a \geq 1\). For an \(m\)-order infinite dimensional generalized Hilbert tensor \(\mathcal{H}_\infty\) with \(a > 0\), we prove that \(\mathcal{H}_\infty\) defines a bounded and positively \((m - 1)\)-homogeneous operator from \(l^1\) into \(l^p\) (\(1 < p < \infty\)). Two upper bounds on the norms of corresponding positively homogeneous operators are obtained.

MSC:

15A69 Multilinear algebra, tensor calculus
15A18 Eigenvalues, singular values, and eigenvectors
15B48 Positive matrices and their generalizations; cones of matrices
47H60 Multilinear and polynomial operators
47J10 Nonlinear spectral theory, nonlinear eigenvalue problems

References:

[1] Chang, K. C.; Pearson, K.; Zhang, T., Some variational principles for \(Z\)-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438, 4166-4182 (2013) · Zbl 1305.15027
[2] Chang, K. C.; Pearson, K.; Zhang, T., Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6, 507-520 (2008) · Zbl 1147.15006
[3] Chen, H.; Qi, L., Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors, J. Ind. Manag. Optim., 11, 4, 1263-1274 (2015) · Zbl 1371.15023
[4] Choi, Man-Duen, Tricks for treats with the Hilbert matrix, Amer. Math. Monthly, 90, 301-312 (1983) · Zbl 0546.47007
[5] Frazer, H., Note on Hilbert’s inequality, J. Lond. Math. Soc., s1-21, 1, 7-9 (1946) · Zbl 0060.14903
[6] Fucik, S.; Necas, J.; Soucek, J.; Soucek, V., Spectral Analysis of Nonlinear Operators, Lecture Notes in Mathematics, vol. 346 (1973), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0268.47056
[7] Hilbert, D., Ein Beitrag zur Theorie des Legendre’schen Polynoms, Acta Math. (Springer Netherlands), 18, 155-159 (1894) · JFM 25.0817.02
[8] He, J.; Huang, T., Upper bound for the largest \(Z\)-eigenvalue of positive tensors, Appl. Math. Lett., 38, 110-114 (2014) · Zbl 1314.15016
[9] He, J., Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20, 7, 1290-1301 (2016) · Zbl 1339.15012
[10] He, J.; Liu, Y. M.; Ke, H.; Tian, J. K.; Li, X., Bounds for the \(Z\)-spectral radius of nonnegative tensors, SpringerPlus, 5, 1, 1727 (2016)
[11] Ingham, A. E., A note on Hilbert’s inequality, J. Lond. Math. Soc., s1-11, 3, 237-240 (1936) · Zbl 0014.25703
[12] Kato, T., On the Hilbert matrix, Proc. Amer. Math. Soc., 8, 1, 73-81 (1957) · Zbl 0078.11504
[13] Li, W.; Liu, D.; Vong, S. W., \(Z\)-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483, 182-199 (2015) · Zbl 1321.15036
[15] Magnus, W., On the spectrum of Hilbert’s matrix, Amer. J. Math., 72, 4, 699-704 (1950) · Zbl 0041.23805
[16] Qi, L., Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40, 1302-1324 (2005) · Zbl 1125.15014
[17] Qi, L., Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput., 41, 1309-1327 (2006) · Zbl 1121.14050
[18] Qi, L., Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439, 228-238 (2013) · Zbl 1281.15025
[19] Qi, L., Hankel tensors: associated Hankel matrices and Vandermonde decomposition, Commun. Math. Sci., 13, 1, 113-125 (2015) · Zbl 1331.15020
[20] Qi, L.; Luo, Z., Tensor Analysis: Spectral Theory and Special Tensors (April 19, 2017), Society for Industrial & Applied Mathematics · Zbl 1370.15001
[21] Song, Y.; Qi, L., Infinite and finite dimensional Hilbert tensors, Linear Algebra Appl., 451, 1-14 (2014) · Zbl 1292.15027
[22] Song, Y.; Qi, L., Positive eigenvalue-eigenvector of nonlinear positive mappings, Front. Math. China, 9, 1, 181-199 (2014) · Zbl 1309.47066
[23] Song, Y.; Qi, L., Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34, 4, 1581-1595 (2013) · Zbl 1355.15009
[24] Song, Y.; Qi, L., Necessary and sufficient conditions for copositive tensors, Linear Multilinear Algebra, 63, 1, 120-131 (2015) · Zbl 1311.15026
[25] Taussky, O., A remark concerning the characteristic roots of the finite segments of the Hilbert matrix, Quart. J. Math., os-20, 1, 80-83 (1949) · Zbl 0036.01302
[26] Wang, Y.; Zhang, K.; Sun, H., Criteria for strong \(H\)-tensors, Front. Math. China, 11, 3, 577-592 (2016) · Zbl 1381.15019
[27] Xu, C., Hankel tensors, Vandermonde tensors and their positivities, Linear Algebra Appl., 491, 56-72 (2016) · Zbl 1334.15064
[28] Yang, Q.; Yang, Y., Further results for Perron-Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl., 32, 4, 1236-1250 (2011) · Zbl 1426.15011
[29] Yang, Y.; Yang, Q., Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31, 5, 2517-2530 (2010) · Zbl 1227.15014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.