×

Gravitational surface Hamiltonian and entropy quantization. (English) Zbl 1369.83021

Summary: The surface Hamiltonian corresponding to the surface part of a gravitational action has \(xp\) structure where \(p\) is conjugate momentum of \(x\). Moreover, it leads to \(TS\) on the horizon of a black hole. Here \(T\) and \(S\) are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this, we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein’s observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

MSC:

83C45 Quantization of the gravitational field

References:

[1] Hawking, S. W., Particle creation by black holes, Commun. Math. Phys.. Commun. Math. Phys., Commun. Math. Phys., 46, 206 (1976), Erratum: · Zbl 1378.83040
[2] Bekenstein, J. D., Black holes and entropy, Phys. Rev. D, 7, 2333 (1973) · Zbl 1369.83037
[3] Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K., Quantum geometry and black hole entropy, Phys. Rev. Lett., 80, 904 (1998) · Zbl 0949.83024
[4] Strominger, A.; Vafa, C., Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B, 379, 99 (1996) · Zbl 1376.83026
[5] Hod, S., Best approximation to a reversible process in black hole physics and the area spectrum of spherical black holes, Phys. Rev. D, 59, Article 024014 pp. (1999)
[6] Bekenstein, J. D.; Mukhanov, V. F., Spectroscopy of the quantum black hole, Phys. Lett. B, 360, 7 (1995)
[7] Hod, S., Bohr’s correspondence principle and the area spectrum of quantum black holes, Phys. Rev. Lett., 81, 4293 (1998) · Zbl 0949.83037
[8] Kunstatter, G., d-Dimensional black hole entropy spectrum from quasinormal modes, Phys. Rev. Lett., 90, Article 161301 pp. (2003) · Zbl 1267.83062
[9] Kiefer, C.; Kolland, G., Gibbs’ paradox and black-hole entropy, Gen. Relativ. Gravit., 40, 1327 (2008) · Zbl 1145.83019
[10] Dreyer, O., Quasinormal modes, the area spectrum, and black hole entropy, Phys. Rev. Lett., 90, Article 081301 pp. (2003)
[11] Maggiore, M., The physical interpretation of the spectrum of black hole quasinormal modes, Phys. Rev. Lett., 100, Article 141301 pp. (2008) · Zbl 1228.83073
[12] Setare, M. R., Area spectrum of extremal Reissner-Nordstrom black holes from quasinormal modes, Phys. Rev. D, 69, Article 044016 pp. (2004)
[13] Vagenas, E. C., Area spectrum of rotating black holes via the new interpretation of quasinormal modes, J. High Energy Phys., 0811, Article 073 pp. (2008)
[14] Medved, A. J.M., On the Kerr quantum area spectrum, Class. Quantum Gravity, 25, 205014 (2008) · Zbl 1152.83385
[15] Banerjee, R.; Majhi, B. R.; Vagenas, E. C., Quantum tunneling and black hole spectroscopy, Phys. Lett. B, 686, 279 (2010)
[16] Majhi, B. R., Hawking radiation and black hole spectroscopy in Horava-Lifshitz gravity, Phys. Lett. B, 686, 49 (2010)
[17] Banerjee, R.; Majhi, B. R.; Vagenas, E. C., A note on the lower bound of black hole area change in tunneling formalism, Europhys. Lett., 92, 20001 (2010)
[18] Majhi, B. R.; Vagenas, E. C., Black hole spectroscopy via adiabatic invariance, Phys. Lett. B, 701, 623 (2011)
[19] Jiang, Q. Q.; Han, Y., On black hole spectroscopy via adiabatic invariance, Phys. Lett. B, 718, 584 (2012)
[20] Kothawala, D.; Padmanabhan, T.; Sarkar, S., Is gravitational entropy quantized?, Phys. Rev. D, 78, Article 104018 pp. (2008)
[21] Ropotenko, K., Quantization of the black hole area as quantization of the angular momentum component, Phys. Rev. D, 80, Article 044022 pp. (2009)
[22] Ropotenko, K., The quantum of area \(\Delta A = 8 \pi l_p^2\) and a statistical interpretation of black hole entropy, Phys. Rev. D, 82, Article 044037 pp. (2010)
[23] Myung, Y. S., Area spectrum of slowly rotating black holes, Phys. Lett. B, 689, 42 (2010)
[24] Parattu, K.; Majhi, B. R.; Padmanabhan, T., Structure of the gravitational action and its relation with horizon thermodynamics and emergent gravity paradigm, Phys. Rev. D, 87, 12, Article 124011 pp. (2013)
[25] Chakraborty, S.; Padmanabhan, T., Geometrical variables with direct thermodynamic significance in Lanczos-Lovelock gravity, Phys. Rev. D, 90, 8, Article 084021 pp. (2014)
[26] Padmanabhan, T., Gravitation: Foundations and Frontiers (2010), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1187.83002
[27] Padmanabhan, T., Classical and quantum thermodynamics of horizons in spherically symmetric space-times, Class. Quantum Gravity, 19, 5387 (2002) · Zbl 1011.83018
[28] Majhi, B. R.; Padmanabhan, T., Thermality and heat content of horizons from infinitesimal coordinate transformations, Eur. Phys. J. C, 73, 12, 2651 (2013)
[29] Padmanabhan, T.; Patel, A., Semiclassical quantization of gravity. 1. Entropy of horizons and the area spectrum
[30] Padmanabhan, T.; Patel, A., Role of horizons in semiclassical gravity: entropy and the area spectrum
[31] Bonneau, G.; Faraut, J.; Valent, G., Self-adjoint extensions of operators and the teaching of quantum mechanics, Am. J. Phys., 69, 322 (2001)
[32] Sierra, G., \(H = x p\) with interaction and the Riemann zeros, Nucl. Phys. B, 776, 327 (2007) · Zbl 1200.11099
[33] Barvinsky, A.; Das, S.; Kunstatter, G., Quantum mechanics of charged black holes, Phys. Lett. B, 517, 415 (2001) · Zbl 0971.83035
[34] Afshar, H.; Detournay, S.; Grumiller, D.; Merbis, W.; Perez, A.; Tempo, D.; Troncoso, R., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D, 93, 10, Article 101503 pp. (2016)
[35] Afshar, H.; Grumiller, D.; Sheikh-Jabbari, M. M., Near horizon soft hairs as microstates of three dimensional black holes · Zbl 1381.83050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.