×

Dark matter in axion landscape. (English) Zbl 1369.81122

Summary: If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.

MSC:

81V25 Other elementary particle theory in quantum theory

References:

[1] Witten, E., Phys. Lett. B, 149, 351 (1984)
[2] Green, M. B.; Schwarz, J. H.; Witten, E., Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology, Cambridge Monographs on Mathematical Physics (1987), Cambridge University Press: Cambridge University Press Cambridge, UK, 596 pp · Zbl 0619.53002
[3] Svrcek, P.; Witten, E., J. High Energy Phys., 0606, Article 051 pp. (2006)
[4] Arvanitaki, A.; Dimopoulos, S.; Dubovsky, S.; Kaloper, N.; March-Russell, J., Phys. Rev. D, 81, Article 123530 pp. (2010)
[5] Arvanitaki, A.; Dubovsky, S., Phys. Rev. D, 83, Article 044026 pp. (2011)
[6] Cicoli, M.; Goodsell, M.; Ringwald, A., J. High Energy Phys., 1210, Article 146 pp. (2012)
[7] Marsh, D. J.E.; Macaulay, E.; Trebitsch, M.; Ferreira, P. G., Phys. Rev. D, 85, Article 103514 pp. (2012)
[8] Daido, R.; Kitajima, N.; Takahashi, F., Phys. Rev. D, 92, 6, Article 063512 pp. (2015)
[9] Higaki, T.; Takahashi, F., Phys. Lett. B, 744, 153 (2015)
[10] Higaki, T.; Takahashi, F., J. High Energy Phys., 1407, Article 074 pp. (2014)
[11] Susskind, L., (Carr, Bernard, Universe or Multiverse? (2009)), 247-266
[12] Kim, J. E.; Nilles, H. P.; Peloso, M., J. Cosmol. Astropart. Phys., 0501, Article 005 pp. (2005)
[13] Choi, K.; Kim, H.; Yun, S., Phys. Rev. D, 90, Article 023545 pp. (2014)
[14] Kobayashi, T.; Takahashi, F., J. Cosmol. Astropart. Phys., 1101, Article 026 pp. (2011)
[15] Czerny, M.; Kobayashi, T.; Takahashi, F., Phys. Lett. B, 735, 176 (2014)
[16] Czerny, M.; Takahashi, F., Phys. Lett. B, 733, 241 (2014)
[17] Czerny, M.; Higaki, T.; Takahashi, F., J. High Energy Phys., 1405, Article 144 pp. (2014)
[18] Czerny, M.; Higaki, T.; Takahashi, F., Phys. Lett. B, 734, 167 (2014)
[19] Freese, K.; Frieman, J. A.; Olinto, A. V., Phys. Rev. Lett., 65, 3233 (1990)
[20] Adams, F. C.; Bond, J. R.; Freese, K.; Frieman, J. A.; Olinto, A. V., Phys. Rev. D, 47, 46 (1993)
[21] Croon, D.; Sanz, V., J. Cosmol. Astropart. Phys., 1502, 02, Article 008 pp. (2015)
[22] Higaki, T.; Takahashi, F., J. High Energy Phys., 1503, Article 129 pp. (2015)
[23] Kadota, K.; Kobayashi, T.; Oikawa, A.; Omoto, N.; Otsuka, H.; Tatsuishi, T. H.
[24] Preskill, J.; Wise, M. B.; Wilczek, F., Phys. Lett. B, 120, 127 (1983)
[25] Abbott, L. F.; Sikivie, P., Phys. Lett. B, 120, 133 (1983)
[26] Dine, M.; Fischler, W., Phys. Lett. B, 120, 137 (1983)
[27] Kusenko, A.; Schmitz, K.; Yanagida, T. T., Phys. Rev. Lett., 115, 1, Article 011302 pp. (2015)
[28] Daido, R.; Kitajima, N.; Takahashi, F., J. Cosmol. Astropart. Phys., 1507, 07, Article 046 pp. (2015)
[29] Kim, J. E.; Carosi, G., Rev. Mod. Phys., 82, 557 (2010)
[30] Bae, K. J.; Huh, J. H.; Kim, J. E., J. Cosmol. Astropart. Phys., 0809, Article 005 pp. (2008)
[31] Wantz, O.; Shellard, E. P.S., Phys. Rev. D, 82, Article 123508 pp. (2010)
[32] Ringwald, A., Phys. Dark Universe, 1, 116 (2012)
[33] Kawasaki, M.; Nakayama, K., Annu. Rev. Nucl. Part. Sci., 63, 69 (2013)
[34] Marsh, D. J.E.
[35] Battye, R. A.; Charnock, T.; Moss, A., Phys. Rev. D, 91, 10, Article 103508 pp. (2015)
[36] Enqvist, K.; Nadathur, S.; Sekiguchi, T.; Takahashi, T., J. Cosmol. Astropart. Phys., 1509, 09, Article 067 pp. (2015)
[37] Silverstein, E.; Westphal, A., Phys. Rev. D, 78, Article 106003 pp. (2008)
[38] McAllister, L.; Silverstein, E.; Westphal, A., Phys. Rev. D, 82, Article 046003 pp. (2010)
[39] Hannestad, S.; Haugbolle, T.; Jarnhus, P. R.; Sloth, M. S., J. Cosmol. Astropart. Phys., 1006, Article 001 pp. (2010)
[40] Takahashi, F., J. Cosmol. Astropart. Phys., 1306, Article 013 pp. (2013)
[41] Higaki, T.; Jeong, K. S.; Kitajima, N.; Takahashi, F., J. High Energy Phys., 1606, 150 (2016)
[42] Jaeckel, J.; Mehta, V. M.; Witkowski, L. T.
[43] Lyth, D. H., Phys. Rev. D, 45, 3394 (1992)
[44] Kobayashi, T.; Kurematsu, R.; Takahashi, F., J. Cosmol. Astropart. Phys., 1309, Article 032 pp. (2013)
[45] Kobayashi, T.; Takahashi, T., J. Cosmol. Astropart. Phys., 1206, Article 004 pp. (2012)
[46] Kawasaki, M.; Kobayashi, T.; Takahashi, F., Phys. Rev. D, 84, Article 123506 pp. (2011)
[47] Ade, P. A.R.
[48] Steinhardt, P. J.; Turner, M. S., Phys. Lett. B, 129, 51 (1983)
[49] Axenides, M.; Brandenberger, R. H.; Turner, M. S., Phys. Lett. B, 126, 178 (1983)
[50] Linde, A. D., Phys. Lett. B, 158, 375 (1985)
[51] Seckel, D.; Turner, M. S., Phys. Rev. D, 32, 3178 (1985)
[52] Ade, P. A.R.
[53] Starobinsky, A. A., Multicomponent de sitter (inflationary) stages and the generation of perturbations, JETP Lett.. JETP Lett., Pisma Zh. Eksp. Teor. Fiz., 42, 124 (1985)
[54] Sasaki, M.; Stewart, E. D., A general analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys., 95, 71 (1996)
[55] Wands, D.; Malik, K. A.; Lyth, D. H.; Liddle, A. R., A new approach to the evolution of cosmological perturbations on large scales, Phys. Rev. D, 62, Article 043527 pp. (2000)
[56] Lyth, D. H.; Malik, K. A.; Sasaki, M., A general proof of the conservation of the curvature perturbation, J. Cosmol. Astropart. Phys., 0505, Article 004 pp. (2005) · Zbl 1236.83043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.