×

On weighted and locally polynomial directional quantile regression. (English) Zbl 1417.62072

Summary: The article deals with certain quantile regression methods for vector responses. In particular, it describes weighted and locally polynomial extensions to the projectional quantile regression, discusses their properties, addresses their computational side, compares their outcome with recent analogous generalizations of the competing multiple-output directional quantile regression, demonstrates a link between the two competing methodologies, complements the results already available in the literature, illustrates the concepts with a few simulated and insightful examples illustrating some of their features, and shows their application to a real financial data set, namely to Forex 1M exchange rates. The real-data example strongly indicates that the presented methods might have a huge impact on the analysis of multivariate time series consisting of two to four dimensional observations.

MSC:

62G08 Nonparametric regression and quantile regression
62H05 Characterization and structure theory for multivariate probability distributions; copulas
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI

References:

[1] Bhattacharya P, Gangopadhyay A (1990) Kernel and nearest-neighbor estimation of a conditional quantile. Ann Stat 18:1400-1415 · Zbl 0706.62040 · doi:10.1214/aos/1176347757
[2] Boček P, Šiman M (2016a) Directional quantile regression in Octave and Matlab. Kybernetika 52:28-51 · Zbl 1374.62002
[3] Boček P, Šiman M (2016b) Directional quantile regression in R. Kybernetika. Submitted · Zbl 1374.62002
[4] Chaudhuri P (1991) Nonparametric estimates of regression quantiles and their local Bahadur representation. Ann Stat 19:760-777 · Zbl 0728.62042 · doi:10.1214/aos/1176348119
[5] Chen Z, Tyler D (2004) On the behavior of Tukey’s depth and median under symmetric stable distributions. J Stat Plan Inference 122:111-124 · Zbl 1040.62038 · doi:10.1016/j.jspi.2003.06.017
[6] Cheng Y, De Gooijer J (2007) On the \[u\] uth geometric conditional quantile. J Stat Plan Inference 137:1914-1930 · Zbl 1118.62051 · doi:10.1016/j.jspi.2006.02.014
[7] Došlá Š (2009) Conditions for bimodality and multimodality of a mixture of two unimodal densities. Kybernetika 45:279-292 · Zbl 1165.62304
[8] Dutta S, Ghosh A, Chaudhuri P (2011) Some intriguing properties of Tukey’s half-space depth. Bernoulli 17:1420-1434 · Zbl 1229.62063 · doi:10.3150/10-BEJ322
[9] Eaton J, Bateman D, Hauberg S (2009) GNU Octave version 3.0.1 manual: a high-level interactive language for numerical computations. CreateSpace Independent Publishing Platform. http://www.gnu.org/software/octave/doc/interpreter
[10] Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman & Hall, London · Zbl 0873.62037
[11] Gannoun A, Saracco J, Yu K (2003) Nonparametric prediction by conditional median and quantiles. J Stat Plan Inference 117:207-223 · Zbl 1021.62075 · doi:10.1016/S0378-3758(02)00384-1
[12] Gijbels I, Nagy S (2016) On smoothness of Tukey depth contours. Statistics 50:1075-1085 · Zbl 1359.62165 · doi:10.1080/02331888.2016.1145680
[13] Hallin M, Lu Z, Paindaveine D, Šiman M (2015) Local bilinear multiple-output quantile/depth regression. Bernoulli 21:1435-1466 · Zbl 1388.62109 · doi:10.3150/14-BEJ610
[14] Hallin M, Paindaveine D, Šiman M (2010) Multivariate quantiles and multiple-output regression quantiles: from \[L_1\] L1 optimization to halfspace depth. Ann Stat 38:635-669 · Zbl 1183.62088 · doi:10.1214/09-AOS723
[15] Hlubinka D, Kotík L, Vencálek O (2010) Weighted halfspace depth. Kybernetika 46:125-148 · Zbl 1189.62088
[16] Honda T (2000) Nonparametric estimation of a conditional quantile for \[\alpha\] α-mixing processes. Ann Inst Stat Math 52:459-470 · Zbl 0960.62033 · doi:10.1023/A:1004113201457
[17] Ioannides D (2004) Fixed design regression quantiles for time series. Stat Probab Lett 68:235-245 · Zbl 1075.62030 · doi:10.1016/j.spl.2003.12.005
[18] Koenker R (2005) Quantile Regression. Cambridge University Press, New York · Zbl 1111.62037 · doi:10.1017/CBO9780511754098
[19] Koenker R (2015) quantreg: Quantile regression. R package · Zbl 0906.62038
[20] Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33-50 · Zbl 0373.62038 · doi:10.2307/1913643
[21] Koenker R, Zhao Q (1996) Conditional quantile estimation and inference for ARCH models. Econom Theory 12:793-813 · doi:10.1017/S0266466600007167
[22] Koltchinskii V (1997) M-estimation, convexity and quantiles. Ann Stat 25:435-477 · Zbl 0878.62037 · doi:10.1214/aos/1031833659
[23] Kong E, Linton O, Xia Y (2010) Uniform Bahadur representation for local polynomial estimates of M-regression and its application to the additive model. Econom Theory 26:1529-1564 · Zbl 1198.62030 · doi:10.1017/S0266466609990661
[24] Kong L, Mizera I (2012) Quantile tomography: using quantiles with multivariate data. Stat Sin 22:1589-1610 · Zbl 1359.62175
[25] McKeague I, López-Pintado S, Hallin M, Šiman M (2011) Analyzing growth trajectories. J Dev Orig Health Dis 2:322-329 · doi:10.1017/S2040174411000572
[26] Paindaveine D, Van Bever G (2013) From depth to local depth: a focus on centrality. J Am Stat Assoc 105:1105-1119 · Zbl 06224990 · doi:10.1080/01621459.2013.813390
[27] Paindaveine D, Šiman M (2011) On directional multiple-output quantile regression. J Multivar Anal 102:193-392 · Zbl 1328.62311 · doi:10.1016/j.jmva.2010.08.004
[28] Paindaveine D, Šiman M (2012) Computing multiple-output regression quantile regions. Comput Stat Data Anal 56:840-853 · Zbl 1244.62060 · doi:10.1016/j.csda.2010.11.014
[29] Paindaveine D, Šiman M (2012) Computing multiple-output regression quantile regions from projection quantiles. Comput Stat 27:29-49 · Zbl 1304.65060 · doi:10.1007/s00180-011-0231-y
[30] R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org · Zbl 1076.62054
[31] Rousseeuw P, Ruts I (1999) The depth function of a population distribution. Metrika 49:213-244 · Zbl 1093.62540
[32] Serfling R (2002) Quantile functions for multivariate analysis: approaches and applications. Stat Neerl 56:214-232 · Zbl 1076.62054 · doi:10.1111/1467-9574.00195
[33] Šiman M (2011) On exact computation of some statistics based on projection pursuit in a general regression context. Commun Stat Simul Comput 40:948-956 · Zbl 1219.62109 · doi:10.1080/03610918.2011.560730
[34] Šiman M (2014) Precision index in the multivariate context. Commun Stat Theory Methods 43:377-387 · Zbl 1458.62315 · doi:10.1080/03610926.2012.661509
[35] The MathWorks, Inc.: Matlab (2013) Natick, Massachusetts · Zbl 1040.62038
[36] Wei Y (2008) An approach to multivariate covariate-dependent quantile contours with application to bivariate conditional growth charts. J Am Stat Assoc 103:397-409 · Zbl 1469.62241 · doi:10.1198/016214507000001472
[37] Yu K, Jones M (1997) A comparison of local constant and local linear regression quantile estimators. Comput Stat Data Anal 25:159-166 · Zbl 0900.62182 · doi:10.1016/S0167-9473(97)00006-6
[38] Yu K, Jones M (1998) Local linear quantile regression. J Am Stat Assoc 93:228-237 · Zbl 0906.62038 · doi:10.1080/01621459.1998.10474104
[39] Yu K, Lu Z (2004) Local linear additive quantile regression. Scand J Stat 31:333-346 · Zbl 1063.62060 · doi:10.1111/j.1467-9469.2004.03_035.x
[40] Zhou Z, Wu W (2009) Local linear quantile estimation for nonstationary time series. Ann Stat 37:2696-2729 · Zbl 1173.62066 · doi:10.1214/08-AOS636
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.