×

Symmetry witnesses. (English) Zbl 1370.81085

Summary: A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states – the rank-one projections – is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.

MSC:

81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81P16 Quantum state spaces, operational and probabilistic concepts
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)

References:

[1] Wigner E P 1959 Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (New York: Academic) · Zbl 0085.37905
[2] Bargmann V 1964 Note on Wigner’s theorem on quantum operations J. Math. Phys.5 862 · Zbl 0141.23205 · doi:10.1063/1.1704188
[3] Kadison R V 1965 Transformations of states in operator theory and dynamics Topology3 177 · Zbl 0129.08705 · doi:10.1016/0040-9383(65)90075-3
[4] Simon B 1976 Quantum dynamics: from automorphism to Hamiltonian Mathematical Physics. Essays in Honor of Valentine Bargmann(Princeton Series in Physics) ed E H Lieb et al (Princeton, NJ: Princeton University Press) p 327 · Zbl 0343.47034
[5] Ludwig G 1983 Foundations of Quantum Mechanics vol I (New York: Springer) · Zbl 0509.46057
[6] Cassinelli G, De Vito E, Lahti P J and Levrero A 1997 Symmetry groups in quantum mechanics and the theorem of Wigner on the symmetry transformations Rev. Math. Phys.9 921 · Zbl 0907.46055 · doi:10.1142/S0129055X97000324
[7] Cassinelli G, De Vito E, Lahti P J and Levrero A 2004 The Theory of Symmetry Actions in Quantum Mechanics with Applications to the Galilei Group (Berlin: Springer) · Zbl 1077.81002
[8] Parthasarathy K R 2005 Mathematical Foundation of Quantum Mechanics (New Delhi: Hindustan Book Agency) · Zbl 1464.81003 · doi:10.1007/978-93-86279-28-6
[9] Grabowski J, Kuś M and Marmo G 2009 Wigner’s theorem and the geometry of extreme positive maps J. Phys. A: Math. Theor.42 345301 · Zbl 1180.81010 · doi:10.1088/1751-8113/42/34/345301
[10] Li C-K and Tsing N-K 1992 Linear preserver problems: a brief introduction and some special techniques Linear Algebr. Appl.162-4 217 · Zbl 0762.15016 · doi:10.1016/0024-3795(92)90377-M
[11] Molnár L 2007 Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces (Berlin: Springer) · Zbl 1119.47001
[12] Davies E B 1976 Quantum Theory of Open Systems (London: Academic) · Zbl 0388.46044
[13] Breuer H-P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) · Zbl 1053.81001
[14] Bengtsson I and Życzkowski K 2006 Geometry of Quantum States (Cambridge: Cambridge University Press) · Zbl 1146.81004 · doi:10.1017/CBO9780511535048
[15] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) · Zbl 1049.81015
[16] Sarbicki G, Chruściński D and Mozrzymas M 2016 Generalising Wigner’s theorem J. Phys. A: Math. Theor.49 305302 · Zbl 1345.81053 · doi:10.1088/1751-8113/49/30/305302
[17] Davies E B 1969 Quantum stochastic processes Commun. Math. Phys.15 277 · Zbl 0184.54102 · doi:10.1007/BF01645529
[18] Størmer E 2017 Positive maps which map the set of rank k projections onto itself Positivity21 509 · Zbl 1378.46037 · doi:10.1007/s11117-016-0432-2
[19] Uhlhorn U 1963 Representation of symmetry transformations in quantum mechanics Ark. Fys.23 307 · Zbl 0108.21805
[20] Šemrl P 2004 Orthogonality preserving transformations on the set of n-dimensional subspaces of a Hilbert space Illinois J. of Math.48 567 · Zbl 1071.47038
[21] Aniello P and Chruściński D 2016 Characterizing the dynamical semigroups that do not decrease a quantum entropy J. Phys. A: Math. Theor.49 345301 · Zbl 1347.81055 · doi:10.1088/1751-8113/49/34/345301
[22] Aniello P 2017 Quantum entropies, Schur concavity and dynamical semigroups J. Phys.: Conf. Ser.804 012003 · doi:10.1088/1742-6596/804/1/012003
[23] Gorini V, Kossakowski A and Sudarshan E C G 1976 Completely positive dynamical semigroups of N-level systems J. Math. Phys.17 821 · Zbl 1446.47009 · doi:10.1063/1.522979
[24] Lindblad G 1976 On the generators of quantum dynamical semigroups Commun. Math. Phys.48 119 · Zbl 0343.47031 · doi:10.1007/BF01608499
[25] Alicki R and Lendi K 1987 Quantum Dynamical Semigroups and Applications (Berlin: Springer) · Zbl 0652.46055
[26] Aniello P, Kossakowski A, Marmo G and Ventriglia F 2010 Brownian motion on Lie groups and open quantum systems J. Phys. A: Math. Theor.43 265301 · Zbl 1202.81127 · doi:10.1088/1751-8113/43/26/265301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.