×

Tracking rates of random walks. (English) Zbl 1407.60064

Summary: We show that simple random walks on (non-trivial) relatively hyperbolic groups stay \(O(\log(n))\)-close to geodesics, where \(n\) is the number of steps of the walk. Using similar techniques we show that simple random walks in mapping class groups stay \(O({\sqrt {n\log ( n)} } )\)-close to geodesics and hierarchy paths. Along the way, we also prove a refinement of the result that mapping class groups have quadratic divergence.
An application of our theorem for relatively hyperbolic groups is that random triangles in non-trivial relatively hyperbolic groups are \(O(\log(n))\)-thin, random points have \(O(\log(n))\)-small Gromov product and that in many cases the average Dehn function is subasymptotic to the Dehn function.

MSC:

60G50 Sums of independent random variables; random walks
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
20F67 Hyperbolic groups and nonpositively curved groups

References:

[1] J. A. Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geometry and Topology 10 (2006), 1523-1578. · Zbl 1145.57016 · doi:10.2140/gt.2006.10.1523
[2] M. Bestvina, K. Bromberg and K. Fujiwara, Constructing group actions on quasitrees and applications to mapping class groups, Publications Mathématiques. Institut de Hautes Études Scientifiques 122 (2015), 1-64. · Zbl 1372.20029 · doi:10.1007/s10240-014-0067-4
[3] Sébastien Blachère, Peter Haïssinsky and Pierre Mathieu, Harmonic measures versus quasiconformal measures for hyperbolic groups, Annales Scientifiques de l’École Normale Supérieure. Quatrième Série 44 (2011), 683-721. · Zbl 1243.60005 · doi:10.24033/asens.2153
[4] O. Bogopolski and E. Ventura, The mean Dehn functions of abelian groups, Journal of Group Theory 11 (2008), 569-586. · Zbl 1193.20050 · doi:10.1515/JGT.2008.035
[5] B. H. Bowditch, Relatively hyperbolic groups, International Journal of Algebra and Computation 22 (2012), 1250016, 66. · Zbl 1259.20052 · doi:10.1142/S0218196712500166
[6] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 319, Springer-Verlag, Berlin, 1999. · Zbl 0988.53001
[7] D. Calegari and J. Maher, Statistics and compression of scl, Ergodic Theory and Dynamical Systems 35 (2015), 64-110. · Zbl 1351.37214 · doi:10.1017/etds.2013.43
[8] F. Dahmani, V. Guirardel and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Memoirs of the American Mathematical Society, 245, 2017. · Zbl 1396.20041
[9] S. Dowdall, M. Duchin and H. Masur, Statistical hyperbolicity in Teichmüller space, Geometric and Functional Analysis 24 (2014), 748-795. · Zbl 1302.30055 · doi:10.1007/s00039-014-0265-8
[10] C. Druţu, Relatively hyperbolic groups: geometry and quasi-isometric invariance, Commentarii Mathematici Helvetici. A Journal of the Swiss Mathematical Society 84 (2009), 503-546. MR 2507252 (2011a:20111) · Zbl 1175.20032
[11] C. Druţu, S. Mozes and M. Sapir, Divergence in lattices in semisimple Lie groups and graphs of groups, Transactions of the American Mathematical Society 362 (2010), 2451-2505. · Zbl 1260.20065
[12] C. Druţu and M. Sapir, Tree-graded spaces and asymptotic cones of groups, Topology. An International Journal of Mathematics 44 (2005), 959-1058, With an appendix by D. Osin and Sapir. · Zbl 1101.20025
[13] C. Druţu, Quasi-isometry invariants and asymptotic cones, International Journal of Algebra and Computation 12 (2002), 99-135, International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000). · Zbl 1010.20029 · doi:10.1142/S0218196702000948
[14] M. Duchin, S. Lelièvre and C. Mooney, Statistical hyperbolicity in groups, Algebraic & Geometric Topology 12 (2012), 1-18. · Zbl 1282.20048 · doi:10.2140/agt.2012.12.1
[15] M. Duchin and K. Rafi, Divergence of geodesics in Teichmüller space and the mapping class group, Geometric and Functional Analysis 19 (2009), 722-742. · Zbl 1187.30041 · doi:10.1007/s00039-009-0017-3
[16] B. Farb, Relatively hyperbolic groups, Geometric and Functional Analysis 8 (1998), 810-840. · Zbl 0985.20027 · doi:10.1007/s000390050075
[17] R. Frigerio and A. Sisto, Characterizing hyperbolic spaces and real trees, Geometriae Dedicata 142 (2009), 139-149. · Zbl 1180.53045 · doi:10.1007/s10711-009-9363-4
[18] H. Furstenberg and H. Kesten, Products of random matrices, Annals of Mathematical Statistics 31 (1960), 457-469. · Zbl 0137.35501 · doi:10.1214/aoms/1177705909
[19] M. Gromov, Hyperbolic groups, in Essays in Group Theory, Mathematical Sciences Research Institute Publications, Vol. 8, Springer, New York, 1987, pp. 75-263. · Zbl 0634.20015 · doi:10.1007/978-1-4613-9586-7_3
[20] D. Groves and J. F. Manning, Dehn filling in relatively hyperbolic groups, Israel Journal of Mathematics 168 (2008), 317-429. · Zbl 1211.20038 · doi:10.1007/s11856-008-1070-6
[21] S. Hensel, P. Przytycki and R. C. H. Webb, 1-slim triangles and uniform hyperbolicity for arc and curve graphs, Journal of the European Mathematical Society 17 (2014), 755-762. · Zbl 1369.57018 · doi:10.4171/JEMS/517
[22] G. C. Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebraic & Geometric Topology 10 (2010), 1807-1856. · Zbl 1202.20046 · doi:10.2140/agt.2010.10.1807
[23] V. A. Kaĭmanovich, An entropy criterion of maximality for the boundary of random walks on discrete groups, Doklady Akademii Nauk SSSR 280 (1985), 1051-1054.
[24] V. A. Kaĭmanovich, Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI) 164 (1987), no. Differentsialnaya Geom. Gruppy Li i Mekh. IX, 29-46, 196-197. · Zbl 1309.20036
[25] V. A. Kaimanovich, The Poisson boundary of hyperbolic groups, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 318 (1994), 59-64. · Zbl 0792.60006
[26] I. Kapovich, A. Miasnikov, P. Schupp, and V. Shpilrain, Average-case complexity and decision problems in group theory, Advances in Mathematics 190 (2005), 343-359. · Zbl 1065.20044 · doi:10.1016/j.aim.2003.02.001
[27] M. Kapovich and B. Leeb, 3-manifold groups and nonpositive curvature, Geometric and Functional Analysis 8 (1998), 841-852. · Zbl 0915.57009 · doi:10.1007/s000390050076
[28] A. Karlsson and G. A. Margulis, A multiplicative ergodic theorem and nonpositively curved spaces, Communications in Mathematical Physics 208 (1999), 107-123. · Zbl 0979.37006 · doi:10.1007/s002200050750
[29] S.-h. Kim and T. Koberda, The geometry of the curve graph of a right-angled Artin group, International Journal of Algebra and Computation 24 (2014), 121-169. · Zbl 1342.20042 · doi:10.1142/S021819671450009X
[30] F. Ledrappier, Some asymptotic properties of random walks on free groups, in Topics in Probability and Lie groups: Boundary Theory, CRM Proc. Lecture Notes, Vol. 28, AmericanMathematical Society, Providence, RI, 2001, pp. 117-152. · Zbl 0994.60073 · doi:10.1090/crmp/028/05
[31] J. Maher, Linear progress in the complex of curves, Transactions of the American Mathematical Society 362 (2010), 2963-2991. · Zbl 1232.37023 · doi:10.1090/S0002-9947-10-04903-2
[32] Joseph Maher, Exponential decay in the mapping class group, Journal of the London Mathematical Society. Second Series 86 (2012), 366-386. · Zbl 1350.37010 · doi:10.1112/jlms/jds011
[33] J. Mangahas, Uniform uniform exponential growth of subgroups of the mapping class group, Geometric and Functional Analysis 19 (2010), 1468-1480. · Zbl 1207.57005 · doi:10.1007/s00039-009-0038-y
[34] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Inventiones Mathematicae 138 (1999), 103-149. · Zbl 0941.32012 · doi:10.1007/s002220050343
[35] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geometric and Functional Analysis 10 (2000), 902-974. · Zbl 0972.32011 · doi:10.1007/PL00001643
[36] A. Yu. Ol’shanskiĭ, Hyperbolicity of groups with subquadratic isoperimetric inequality, International Journal of Algebra and Computation 1 (1991), 281-289. · Zbl 0791.20034 · doi:10.1142/S0218196791000183
[37] D. V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Memoirs of the American Mathematical Society 179 (2006), vi+100. · Zbl 1093.20025
[38] P. Papasoglu, On the sub-quadratic isoperimetric inequality, Geometric group theory (Columbus, OH, 1992), Ohio State University Mathematical Research Institute Publications, Vol. 3, de Gruyter, Berlin, 1995, pp. 149-157. · Zbl 0849.20026
[39] A. Sisto, Contracting elements and random walks, Journal für die Reine und Angewandte Mathematik, to appear. arXiv:1112.2666. · Zbl 1499.20108
[40] A. Sisto, On metric relative hyperbolicity, arXiv:1210.8081 (2012).
[41] Alessandro Sisto, Projections and relative hyperbolicity, L’Enseignement Mathématique. Revue Internationale. 2e Série 59 (2013), 165-181. · Zbl 1309.20036
[42] G. Tiozzo, Sublinear deviation between geodesics and sample paths, Duke Mathematical Journal 164 (2015), 511-539. · Zbl 1314.30085 · doi:10.1215/00127094-2871197
[43] R. C. H. Webb, A short proof of the bounded geodesic image theorem, Journal für die reine und angewandte Mathematik 709 (2015), 219-228. · Zbl 1335.57029
[44] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, Vol. 138, Cambridge University Press, Cambridge, 2000. · Zbl 0951.60002
[45] R. Young, Averaged Dehn functions for nilpotent groups, Topology. An International Journal of Mathematics 47 (2008), 351-367. · Zbl 1188.20040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.