×

Asymptotic dimension and small-cancellation for hierarchically hyperbolic spaces and groups. (English) Zbl 1431.20028

Summary: We prove that all hierarchically hyperbolic groups have finite asymptotic dimension. One application of this result is to obtain the sharpest known bound on the asymptotic dimension of the mapping class group of a finite type surface: improving the bound from exponential to at most quadratic in the complexity of the surface. We also apply the main result to various other hierarchically hyperbolic groups and spaces. We also prove a small-cancellation result namely: if \(G\) is a hierarchically hyperbolic group, \(H\le G\) is a suitable hyperbolically embedded subgroup, and \(N\vartriangleleft H\) is ‘sufficiently deep’ in \(H\), then \(G/\widehat{N}\) is a relatively hierarchically hyperbolic group. This new class provides many new examples to which our asymptotic dimension bounds apply. Along the way, we prove new results about the structure of HHSs, for example: the associated hyperbolic spaces are always obtained, up to quasi-isometry, by coning off canonical coarse product regions in the original space (generalizing a relation established by Masur and Minsky between the complex of curves of a surface and Teichmüller space).

MSC:

20F65 Geometric group theory
20F67 Hyperbolic groups and nonpositively curved groups
57M07 Topological methods in group theory

References:

[1] J.Behrstock, M. F.Hagen and A.Sisto, ‘Hierarchically hyperbolic spaces I: curve complexes for cubical groups’, Geom. Topol., to appear. · Zbl 1439.20043
[2] J.Behrstock, M. F.Hagen and A.Sisto, ‘Hierarchically hyperbolic spaces II: combination theorems and the distance formula’, Preprint, 2015, arXiv eprint 1509.00632v2, pp. 1-53.
[3] J.Behrstock, B.Kleiner, Y.Minsky and L.Mosher, ‘Geometry and rigidity of mapping class groups’, Geom. Topol.16 (2012) 781-888. · Zbl 1281.20045
[4] G.Bell and A.Dranishnikov, ‘On asymptotic dimension of groups’, Algebr. Geom. Topol.1 (2001) 57-71. · Zbl 1008.20039
[5] G.Bell and A.Dranishnikov, ‘A Hurewicz‐type theorem for asymptotic dimension and applications to geometric group theory’, Trans. Amer. Math. Soc.358 (2006) 4749-4764. · Zbl 1117.20032
[6] G.Bell and A.Dranishnikov, ‘Asymptotic dimension’, Topology Appl.155 (2008) 1265-1296. · Zbl 1149.54017
[7] G.Bell and A.Dranishnikov, ‘Asymptotic dimension in Będlewo’, Topology Proc.38 (2011) 209-236. · Zbl 1261.20044
[8] G.Bell and K.Fujiwara, ‘The asymptotic dimension of a curve graph is finite’, J. Lond. Math. Soc. (2) 77 (2008) 33-50. · Zbl 1135.57010
[9] M.Bestvina and K.Bromberg, ‘On the asymptotic dimension of the curve complex’, Preprint, 2015, arXiv e‐print 1508.04832.
[10] M.Bestvina, K.Bromberg and K.Fujiwara, ‘Constructing group actions on quasi‐trees and applications to mapping class groups’, Publ. Math. Inst. Hautes Études Sci.122 (2015) 1-64. · Zbl 1372.20029
[11] B. H.Bowditch, ‘Tight geodesics in the curve complex’, Invent. Math.171 (2008) 281-300. · Zbl 1185.57011
[12] M.Burger and S.Mozes, ‘Lattices in product of trees’, Publ. Math. Inst. Hautes Études Sci.92 (2000) 151-194. · Zbl 1007.22013
[13] Y.Cornulier and P.de laHarpe, ‘Metric geometry of locally compact groups’, Preprint, 2014, arXiv:1403.3796.
[14] F.Dahmani, V.Guirardel and D.Osin, ‘Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces’, Preprint, 2011, arXiv:1111.7048. · Zbl 1396.20041
[15] C.Druţu and M.Sapir, ‘Tree‐graded spaces and asymptotic cones of groups’, Topology44 (2005) 959-1058. · Zbl 1101.20025
[16] M. G.Durham, M. F.Hagen and A.Sisto, ‘Boundaries and automorphisms of hierarchically hyperbolic spaces’, Geom. Topol., to appear. · Zbl 1439.20044
[17] M.Gromov, ‘Geometric group theory, vol. 2: Asymptotic invariants of infinite groups’, Bull. Amer. Math. Soc.33 (1996) 273-979.
[18] D.Groves and J. FoxManning, ‘Dehn filling in relatively hyperbolic groups’, Israel J. Math.168 (2008) 317-429. · Zbl 1211.20038
[19] V.Guirardel, ‘Geometric small cancellation’, Geometric group theory, IAS/Park City Mathematics Series 21 (American Mathematical Society, Providence, RI, 2014) 55-90. · Zbl 1440.20002
[20] M. F.Hagen, ‘The simplicial boundary of a CAT(0) cube complex’, Algebr. Geom. Topol.13 (2013) 1299-1367. · Zbl 1267.05302
[21] M. F.Hagen, ‘Weak hyperbolicity of cube complexes and quasi‐arboreal groups’, J. Topol.7 (2014) 385-418. · Zbl 1348.20044
[22] M. F.Hagen and T.Susse, ‘Hierarchical hyperbolicity of all cubical groups’, Preprint, 2016, arXiv:1609.01313.
[23] M.Hull, ‘Small cancellation in acylindrically hyperbolic groups’, Preprint, 2013, arXiv:1308.4345. · Zbl 1395.20028
[24] H. A.Masur and Y. N.Minsky, ‘Geometry of the complex of curves I: hyperbolicity’, Invent. Math.138 (1999) 103-149. · Zbl 0941.32012
[25] H. A.Masur and Y. N.Minsky, ‘Geometry of the complex of curves II: hierarchical structure’, Geom. Funct. Anal.10 (2000) 902-974. · Zbl 0972.32011
[26] D.Osin, ‘Asymptotic dimension of relatively hyperbolic groups’, Int. Math. Res. Not.2005 (2005) 2143-2161. · Zbl 1089.20028
[27] D. V.Osin, ‘Peripheral fillings of relatively hyperbolic groups’, Invent. Math.167 (2007) 295-326. · Zbl 1116.20031
[28] Y. A.Pichel, A.Minasyan and A.Sisto, ‘Commensurating endomorphisms of acylindrically hyperbolic groups and applications’, Groups Geom. Dyn.10 (2016) 1149-1210. · Zbl 1395.20027
[29] A.Sisto, ‘On metric relative hyperbolicity’, Preprint, 2012, arXiv:1210.8081.
[30] A.Smirnov, ‘The linearly controlled asymptotic dimension of the fundamental group of a graph manifold’, Algebra i Analiz22 (2010) 185-203. · Zbl 1227.57025
[31] R. C. H.Webb, ‘Combinatorics of tight geodesics and stable lengths’, Trans. Amer. Math. Soc.367 (2015) 7323-7342. · Zbl 1339.57029
[32] D. T.Wise, ‘Complete square complexes’, Comment. Math. Helv.82 (2007) 683-724. · Zbl 1142.20025
[33] D. T.Wise, ‘The structure of groups with a quasiconvex hierarchy’, Preprint, 2012, 1-181.
[34] N.Wright, ‘Finite asymptotic dimension for CAT(0) cube complexes’, Geom. Topol.16 (2012) 527-554. · Zbl 1327.20047
[35] G.Yu, ‘The Novikov conjecture for groups with finite asymptotic dimension’, Ann. of Math. (2) 147 (1998) 325-355. · Zbl 0911.19001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.