×

The principal series of \(p\)-adic groups with disconnected center. (English) Zbl 1383.20033

Let \(\mathcal{G}\) be a split connected reductive group over a local non-Archimedean field \(F\), possibly with disconnected center. In this paper, the authors construct a local Langlands classification for all the principal series representations of \(\mathcal{G}\) under the assumption that the residual characteristic does not take on certain small values. They follow a similar approach to that of M. Reeder [Represent. Theory 6, 101–126 (2002; Zbl 0999.22021)], based on A. Roche’s realization of types, and his equivalence of categories with Iwahori-Hecke algebras [Ann. Sci. Éc. Norm. Supér. (4) 31, No. 3, 361–413 (1998; Zbl 0903.22009)]. Furthermore, they show that these representations are nicely parameterized by suitable extended quotient, in line with the ABPS conjecture (the Aubert-Baum-Plymen-Solleveld cojecture).
More specifically, let \(\mathcal{T}\) be a maximal torus in \(\mathcal{G}\), and let \(G\) and \(T\) be the Langlands dual groups of \(\mathcal{G}\) and \(\mathcal{T}\), respectively. Denote by \(\mathbf{Irr}(\mathcal{G},\mathcal{T})\) the space of all \(\mathcal{G}\)-representations in the principal series. The authors consider Langlands parameters of the form \(\Phi: F^\times \times \mathrm{SL}_2(\mathbb{C}) \to G\), and for such \(\Phi\) they define a Kazhdan-Lusztig-Reeder parameter as the ordered pair \((\Phi, \rho)\), where \(\rho\) is a “geometric” representation of \(\pi_0(Z_G(\Phi))\). Let \(\mathcal{W}^G=W(G,T)\). The authors prove that there exists a commutative, bijective triangle \[ \begin{aligned} & (\mathbf{Irr}\mathcal{T}/\!/\mathcal{W}^G)_2 \\ & \swarrow \searrow \\ \mathbf{Irr}(\mathcal{G},\mathcal{T}) & \longrightarrow \{\text{KLR parameters for }G \}/G \end{aligned} \] Here, \((\mathbf{Irr}\mathcal{T}/\!/\mathcal{W}^G)_2\) is the extendend quotient of the second kind; the right slanted map is natural, and via the bottom map any \(\pi \in \mathbf{Irr}(\mathcal{G},\mathcal{T})\) canonically determines a Langlands parameter \(\Phi\) for \(\mathcal{G}\). The triangle above is obtained as the union of corresponding triangles for all Bernstein components.
The authors explicitly verify the desiderata for the local Langlands correspondence proposed by A. Borel [Proc. Symp. Pure Math. 33, 27–61 (1979; Zbl 0412.10017)]. In particular, the constructed correspondence is functorial with respect to homomorphisms of reductive groups.

MSC:

20G25 Linear algebraic groups over local fields and their integers
20G05 Representation theory for linear algebraic groups
22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] J. D.Adler and A.Roche, ‘An intertwining result for \(p\)‐adic groups’, Canad. J. Math.52 (2000) 449-467. · Zbl 1160.22304
[2] A.‐M.Aubert, P.Baum and R.Plymen, ‘The Hecke algebra of a reductive \(p\)‐adic group: a geometric conjecture’, Noncommutative geometry and number theory, Aspects of Mathematics E37 (eds C.Consani (ed.) and M.Marcolli (ed.); Vieweg Verlag, Berlin, 2006) 1-34. · Zbl 1120.14001
[3] A.‐M.Aubert, P.Baum, R. J.Plymen and M.Solleveld, ‘Geometric structure in smooth dual and local Langlands conjecture’, Jpn. J. Math.9 (2014) 99-136. · Zbl 1371.11097
[4] A.‐M.Aubert, P. F.Baum, R. J.Plymen and M.Solleveld, ‘Conjectures about \(p\)‐adic groups and their noncommutative geometry’, Proceedings of Around Langlands Correspondences, Orsay, 2015, to appear, Preprint, arXiv:1508.02837.
[5] A.‐M.Aubert, P.Baum, R. J.Plymen and M.Solleveld, ‘Geometric structure for the principal series of a split reductive \(p\)‐adic group with connected centre’, J. Noncommut. Geom.10 (2016) 663-680. · Zbl 1347.22013
[6] J. N.Bernstein, P.Deligne, ‘Le “centre” de Bernstein’, Représentations des groupes réductifs sur un corps local (Travaux en cours, Hermann, 1984) 1-32. · Zbl 0599.22016
[7] A.Borel, ‘Admissible representations of a semi‐simple group over a local field with vectors fixed under an Iwahori subgroup’, Invent. Math.35 (1976) 233-259. · Zbl 0334.22012
[8] A.Borel, ‘Automorphic L‐functions’, Automorphic forms, representations and L‐functions, Part 1, Proc. Sympos. Pure Math.33 (1979) 27-61. · Zbl 0412.10017
[9] W.Borho and R.MacPherson, ‘Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes’, C. R. Acad. Sci. Paris Sér. I292 (1981) 707-710. · Zbl 0467.20036
[10] C. J.Bushnell, G.Henniart and P. C.Kutzko, ‘Types and explicit Plancherel formulae for reductive \(p\)‐adic groups’, On certain L‐functions, Clay Mathematics Proceedings 13 (American Mathematical Society, 2011) 55-80. · Zbl 1222.22011
[11] C. J.Bushnell and P. C.Kutzko, ‘Smooth representations of reductive \(p\)‐adic groups: structure theory via types’, Proc. Lond. Math. Soc.77 (1998) 582-634. · Zbl 0911.22014
[12] R. W.Carter, Finite groups of lie type, conjugacy classes and complex characters (Wiley Classics Library, London, 1993).
[13] W.Casselman, ‘The unramified principal series representations of \(p\)‐adic groups I. The spherical function’, Compos. Math.40 (1980) 387-406. · Zbl 0472.22004
[14] N.Chriss and V.Ginzburg, Representation theory and complex geometry (Birkhäuser, Basel, 2000).
[15] P.Delorme and E. M.Opdam, ‘The Schwartz algebra of an affine Hecke algebra’, J. reine angew. Math.625 (2008) 59-114. · Zbl 1173.22014
[16] R.Fowler and G.Röhrle, ‘On cocharacters associated to nilpotent elements of reductive groups’, Nagoya Math. J.190 (2008) 105-128. · Zbl 1185.20050
[17] D.Goldberg and A.Roche, ‘Hecke algebras and \(S L_n\)‐types’, Proc. Lond. Math. Soc.90.1 (2005) 87-131. · Zbl 1172.22300
[18] G. J.Heckman and E. M.Opdam, ‘Harmonic analysis for affine Hecke algebras’, Current developments in mathematics (International Press, Boston, MA, 1996) 37-60. · Zbl 0932.22006
[19] R.Hotta, ‘On Springer’s representations’, J. Fac. Sci. Univ. Tokyo Sect. IA28 (1982) 863-876. · Zbl 0584.20033
[20] N.Iwahori and H.Matsumoto, ‘On some Bruhat decomposition and the structure of the Hecke rings of the \(p\)‐adic Chevalley groups’, Publ. Math. Inst. Hautes Études Sci.25 (1965) 5-48. · Zbl 0228.20015
[21] K.Iwasawa, Local class field theory, Oxford Mathematical Monographs (Oxford University Press, Oxford, 1986). · Zbl 0604.12014
[22] J. C.Jantzen, ‘Nilpotent orbits in representation theory’, Lie theory, Lie algebras and representations, Progress in Mathematics 228 (eds J.‐P.Anker (ed.) and B.Orsted (ed.); Birkhäuser, Boston, 2004). · Zbl 1169.14319
[23] S.‐I.Kato, ‘A realization of irreducible representations of affine Weyl groups’, Indag. Math.45.2 (1983) 193-201. · Zbl 0531.20020
[24] D.Kazhdan and G.Lusztig, ‘Proof of the Deligne-Langlands conjecture for Hecke algebras’, Invent. Math.87 (1987) 153-215. · Zbl 0613.22004
[25] G.Lusztig, ‘Character sheaves V’, Adv. Math.61 (1986) 103-155. · Zbl 0602.20036
[26] G.Lusztig, ‘Cells in affine Weyl groups, II’, J. Algebra109 (1987) 536-548. · Zbl 0625.20032
[27] G.Lusztig, ‘Cells in affine Weyl groups, III’, J. Fac. Sci. Univ. Tokyo Sect. IA Math34 (1987) 223-243. · Zbl 0631.20028
[28] G.Lusztig, ‘Cells in affine Weyl groups, IV’, J. Fac. Sci. Univ. Tokyo Sect. IA Math36 (1989) 297-328. · Zbl 0688.20020
[29] G.Lusztig, ‘Affine Hecke algebras and their graded version’, J. Amer. Math. Soc.2.3 (1989) 599-635. · Zbl 0715.22020
[30] L.Morris, ‘Tamely ramified supercuspidal representations’, Ann. Sci. Éc. Norm. Supér. (4) 29 (1996) 639-667. · Zbl 0870.22012
[31] A.Moy, ‘Distribution algebras on p‐adic groups and Lie algebras’, Canad. J. Math.63.5 (2011) 1137-1160. · Zbl 1225.22017
[32] E. M.Opdam, ‘On the spectral decomposition of affine Hecke algebras’, J. Inst. Math. Jussieu3 (2004) 531-648. · Zbl 1102.22009
[33] A.Ram and J.Ramagge, ‘Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory’, Trends Math. (2003) 428-466. · Zbl 1063.20004
[34] M.Reeder, ‘Whittaker functions, prehomogeneous vector spaces and standard representations of \(p\)‐adic groups’, J. reine angew. Math.450 (1994) 83-121. · Zbl 0794.22014
[35] M.Reeder, ‘Isogenies of Hecke algebras and a Langlands correspondence for ramified principal series representations’, Represent. Theory6 (2002) 101-126. · Zbl 0999.22021
[36] A.Roche, ‘Types and Hecke algebras for principal series representations of split reductive \(p\)‐adic groups’, Ann. Sci. ��c. Norm. Supér.31 (1998) 361-413. · Zbl 0903.22009
[37] T.Shoji, ‘Green functions of reductive groups over a finite field’, Proceedings of the American Mathematical Society 47 (American Mathematical Society, Providence, RI, 1987) 289-301. · Zbl 0648.20047
[38] M.Solleveld, ‘On the classification of irreducible representations of affine Hecke algebras with unequal parameters’, Represent. Theory16 (2012) 1-87. · Zbl 1272.20003
[39] T.Springer and R.Steinberg, Conjugacy classes, Lecture Notes in Mathematics 131 (Springer‐Verlag, Berlin, 1970) 167-266. · Zbl 0249.20024
[40] R.Steinberg, ‘Regular elements of semisimple algebraic groups’, Publ. Math. Inst. Hautes Études Sci.25 (1965) 49-80. · Zbl 0136.30002
[41] R.Steinberg, ‘Torsion in reductive groups’, Adv. Math.15 (1975) 63-92. · Zbl 0312.20026
[42] J.‐L.Waldspurger, ‘La formule de Plancherel pour les groupes \(p\)‐adiques (d’après Harish‐Chandra)’, J. Inst. Math. Jussieu2 (2003) 235-333. · Zbl 1029.22016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.