×

Variational assimilation of mean daily observation data for the problem of sea hydrothermodynamics. (English) Zbl 1368.49025

Summary: The mathematical model of hydrothermodynamics of the Baltic Sea is considered with the pole moved to a neighborhood of St. Petersburg in order to improve the horizontal resolution in the Gulf of Finland. The problem of variational assimilation of mean daily data for Sea Surface Temperature (SST) is formulated and studied for the given type of calculation grid of this model. A new algorithm of solution of the inverse problem for reconstruction of the heat flux on the interface of two media is proposed on the base of variational assimilation of satellite observation data. Results of numerical experiments are presented for reconstruction of heat fluxes in the problem of variational assimilation of mean daily observations of SST data.

MSC:

49K20 Optimality conditions for problems involving partial differential equations
65K10 Numerical optimization and variational techniques
Full Text: DOI

References:

[1] V. I. Agoshkov, Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics. INM RAS, Moscow, 2003 (in Russian).; Agoshkov, V. I., Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics, INM RAS (2003) · Zbl 1236.49002
[2] V. I. Agoshkov, A. V. Gusev, N. A. Dianskii, and R. V. Oleinikov, An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data. Russ. J. Numer. Anal. Math. Modelling22 (2007), No. 2, 1-10.; Agoshkov, V. I.; Gusev, A. V.; Dianskii, N. A.; Oleinikov, R. V., An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data, Russ. J. Numer. Anal. Math. Modelling, 22, No. 2, 1-10 (2007) · Zbl 1388.86001
[3] V. I. Agoshkov, E. I. Parmuzin, V. P. Shutyaev, Numerical algorithm for variational assimilation of sea surface temperature data. Comp. Math. Math. Phys. 48 (2008), No. 8, 1293-1312.; Agoshkov, V. I.; Parmuzin, E. I.; Shutyaev, V. P., Numerical algorithm for variational assimilation of sea surface temperature data, Comp. Math. Math. Phys., 48, No. 8, 1293-1312 (2008) · Zbl 1199.86004
[4] V. I. Agoshkov, E. I. Parmuzin, V. B. Zalesny, V. P. Shutyaev, N. B. Zakharova, and A. V. Gusev, Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics. Russ. J. Numer. Anal. Math. Modelling30 (2015), No. 4, 203-212.; Agoshkov, V. I.; Parmuzin, E. I.; Zalesny, V. B.; Shutyaev, V. P.; Zakharova, N. B.; Gusev, A. V., Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics, Russ. J. Numer. Anal. Math. Modelling, 30, No. 4, 203-212 (2015) · Zbl 1322.49052
[5] V. V. Alekseev and V. B. Zalesny, Numerical model of large-scale ocean dynamics. In Computational Processes and Systems, Nauka, Moscow, 1993.; Alekseev, V. V.; Zalesny, V. B., Numerical model of large-scale ocean dynamics, In Computational Processes and Systems (1993)
[6] I. Karagali, J. Hoyer, and C. B. Hasager, SST diurnal variability in the North Sea and the Baltic Sea. Remote Sensing of Environment121 (2012), 159-170,; Karagali, I.; Hoyer, J.; Hasager, C. B., SST diurnal variability in the North Sea and the Baltic Sea, Remote Sensing of Environment, 121, 159-170 (2012) · doi:10.1016/j.rse.2012.01.016
[7] G. I. Marchuk, V. P. Dymnikov, and V. B. Zalesny, Mathematical Models in Geophysical Fluid Dynamics and Numerical Methods for Their Implementation. Gidrometeoizdat, Leningrad, 1987.; Marchuk, G. I.; Dymnikov, V. P.; Zalesny, V. B., Mathematical Models in Geophysical Fluid Dynamics and Numerical Methods for Their Implementation (1987) · Zbl 0694.76001
[8] G. I. Marchuk, Splitting and alternative direction methods. In: Handbook of Numerical Analysis (Eds. P. G. Ciarlet and J. L. Lions). North-Holland, Amsterdam, 1990, Vol. 1, pp 197-462.; Marchuk, G. I.; Ciarlet, P. G.; Lions, J. L., Splitting and alternative direction methods, In: Handbook of Numerical Analysis, Vol. 1, pp. 197-462 (1990) · Zbl 0875.65049
[9] G. I. Marchuk, A. S. Rusakov, V. B. Zalesny, N. A. Dianskii, Splitting numerical technique with application to the high resolution simulation of the Indian ocean circulation. In: Pure Appl. Geophys. Birkhauser Verlag, Basel, 2005. Vol. 162, pp. 1407-1429.; Marchuk, G. I.; Rusakov, A. S.; Zalesny, V. B.; Dianskii, N. A., Splitting numerical technique with application to the high resolution simulation of the Indian ocean circulation, In: Pure Appl. Geophys., Vol. 162, pp. 1407-1429 (2005)
[10] E. I. Parmuzin and V. I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black sea dynamics. Russ. J. Numer. Anal. Math. Modelling27 (2012), No. 1, 69-94.; Parmuzin, E. I.; Agoshkov, V. I., Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black sea dynamics, Russ. J. Numer. Anal. Math. Modelling, 27, No. 1, 69-94 (2012) · Zbl 1242.86006
[11] G. U. Roll’, Physics of Atmospheric Processes over Sea. Gidrometeoizdat, Moscow, 1968 (in Russian).; Roll’, G. U., Physics of Atmospheric Processes over Sea (1968)
[12] N. B. Zakharova and S. A. Lebedev, ARGO floats data interpolation for data assimilation in World ocean circulation models. Modern Problems of Remote Sensing of the Earth from Space7 (2010), No. 4, 104-111.; Zakharova, N. B.; Lebedev, S. A., ARGO floats data interpolation for data assimilation in World ocean circulation models, Modern Problems of Remote Sensing of the Earth from Space, 7, No. 4, 104-111 (2010)
[13] N. B. Zakharova, V. I. Agoshkov, and E. I. Parmuzin, The new method of ARGO buoys system observation data interpolation. Russ. J. Numer. Anal. Math. Modelling28 (2013), No. 1, 67-84.; Zakharova, N. B.; Agoshkov, V. I.; Parmuzin, E. I., The new method of ARGO buoys system observation data interpolation, Russ. J. Numer. Anal. Math. Modelling, 28, No. 1, 67-84 (2013) · Zbl 1260.86002
[14] V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov, A. V. Bagno, A. V. Gusev, N. A. Dianskii, S. N. Moshonkin, R. Tamsalu, and E. M. Volodin, Numerical simulation of large-scale ocean circulation based on multicomponent splitting method. Russ. J. Numer. Anal. Math. Modelling25 (2010), No. 6, 581-609.; Zalesny, V. B.; Marchuk, G. I.; Agoshkov, V. I.; Bagno, A. V.; Gusev, A. V.; Dianskii, N. A.; Moshonkin, S. N.; Tamsalu, R.; Volodin, E. M., Numerical simulation of large-scale ocean circulation based on multicomponent splitting method, Russ. J. Numer. Anal. Math. Modelling, 25, No. 6, 581-609 (2010) · Zbl 1203.86007
[15] V. B. Zalesny, A. V. Gusev, V. O. Ivchenko, R. Tamsalu, and R. Aps, Numerical model of the Baltic Sea circulation. Russ. J. Numer. Anal. Math. Modelling28 (2013), No. 1, 85-100.; Zalesny, V. B.; Gusev, A. V.; Ivchenko, V. O.; Tamsalu, R.; Aps, R., Numerical model of the Baltic Sea circulation, Russ. J. Numer. Anal. Math. Modelling, 28, No. 1, 85-100 (2013) · Zbl 1260.86003
[16] V. B. Zalesny, A. V. Gusev, S. Yu. Chernobai, R. Aps, R. E. Tamsalu, P. Kujala, and J. Rytkönen, The Baltic Sea circulation modelling and assessment of marine pollution. Russ. J. Numer. Anal. Math. Modelling29 (2014), No. 2, 129-138.; Zalesny, V. B.; Gusev, A. V.; Chernobai, S. Yu.; Aps, R.; Tamsalu, R. E.; Kujala, P.; Rytkönen, J., The Baltic Sea circulation modelling and assessment of marine pollution, Russ. J. Numer. Anal. Math. Modelling, 29, No. 2, 129-138 (2014) · Zbl 1302.86006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.